Actions de groupes Feuille 2

L3 Mathématiques – Site Nancy, S5 – 2025-2026

Algèbre 2 – Feuille 2 Actions de groupes

Exercice 1. Soit le sous-groupe de $GL(2,\mathbb{R})$

$$G = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in GL(2, \mathbb{R}) \right\}$$

Montrer que G agit naturellement sur \mathbb{R}^2 par

$$\forall g \in G, \forall X \in \mathbb{R}^2, \quad (g, X) \mapsto g \cdot X = gX$$

Montrer que pour cette action, il y a quatre orbites, et décrire ces orbites.

Exercice 2. Soit G un sous-groupe de $GL(2,\mathbb{R})$. On fait agir G sur \mathbb{R}^2 . Décrire l'orbite d'un point A quand G est le sous-groupe engendré par

- (a) une symétrie par rapport à une droite D passant par (0,0);
- (b) une rotation d'angle $\pi/2$ de centre (0,0).

Exercice 3. Soit G un sous-groupe du groupe symétrique \mathfrak{S}_4 opérant sur $\{1,2,3,4\}$ par l'action naturelle de \mathfrak{S}_4 . Pour $i \in \{1,2,3,4\}$, on note O_i l'orbite de i et G_i le stabilisateur de i. Décrire O_i et G_i , vérifier l'équation aux classes et la formule de Burnside lorsque :

- (a) G est engendré par le 3-cycle (123);
- (b) G est engendré par le 4-cycle $(1\,2\,3\,4)$;
- (c) G est engendré par toutes les double transpositions (xy)(zt) disjointes, $x, y, z, t \in \{1, 2, 3, 4\}$;
 - (d) G est le sous-groupe des permutations paires de \mathfrak{S}_4 .

Exercice 4. On considère l'action de \mathfrak{S}_3 sur $X = \mathfrak{S}_3$ par conjugaison. Pour chaque point $x \in X$, décrire l'orbite et le stabilisateur.

Exercice 5. Soit $n \geq 1$. On considère l'action du groupe orthogonal $O_n(\mathbb{R})$ sur \mathbb{R}^n donnée par

$$\forall (A, x) \in O_n(\mathbb{R}) \times \mathbb{R}^n, \ A \cdot x = A(x)$$

Montrer que les orbites sont les sphères de centre $0_{\mathbb{R}^n}$.

Exercice 6. Soient n, m deux entiers naturels non nuls. On fait agir le groupe $G = GL(n, \mathbb{R}) \times GL(m, \mathbb{R})$ sur l'ensemble des matrices rectangulaires $E = \mathcal{M}_{n,m}(\mathbb{R})$ par

$$\forall (P,Q) \in G, \forall A \in E, (P,Q) \cdot A = PAQ^{-1}$$

Montrer que les orbites de cette action sont les ensembles

$$\mathcal{O}_r = \{ A \in E, \operatorname{rg}(A) = r \}$$

où r est un entier compris entre 0 et $\min(n, m)$.

Exercice 7. (a) Déterminer les orbites de l'action naturelle de $GL(n,\mathbb{R})$ sur \mathbb{R}^n

- (b) Montrer que le groupe $GL(n,\mathbb{R})$ opère transitivement sur $\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$.
- (c) Déterminer le stabilisateur de $(1, 0, \dots, 0)$.
- (d) En déduire qu'il existe une bijection naturelle de $GL(n, \mathbb{R})/GL(n-1, \mathbb{R}) \times \mathbb{R}^{n-1}$ sur l'ensemble $\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}.$

Exercice 8. (a) Montrer que le groupe $SL(2,\mathbb{R})$ opère transitivement sur le demi-plan $\mathbb{T} = \{z \in \mathbb{C}, \Im(z) > 0\}$ via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d} \tag{1}$$

- (b) Déterminer le stabilisateur de i.
- (c) En déduire qu'il existe une bijection entre $SL(2,\mathbb{R})/SO(2,\mathbb{R})$ et \mathbb{T} .

Exercice 9. On note $SO_2(\mathbb{R})$ (resp. $SO_3(\mathbb{R})$) le groupe de rotations (isométries directes) de l'espace euclidien \mathbb{R}^2 (resp. \mathbb{R}^3).

- (a) Montrer que $SO_2(\mathbb{R})$ agit transitivement sur le cercle unité de \mathbb{R}^2 .
- (b) Montrer que $SO_3(\mathbb{R})$ agit transitivement sur la sphère unité de \mathbb{R}^3 .

Exercice 10. Soit $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien de dimension ≥ 2 et $S = \{x \in E \mid ||x|| = 1\}$ la sphère unité de E. On désigne par O(E) le groupe orthogonal de E (groupe des isométries de E) et par SO(E) (ou $O^+(E)$) le sous-groupe de O(E) formé des automorphismes orthogonaux positifs (rotations vectorielles).

- (1) Montrer que l'application $(u, x) \in SO(E) \times S \mapsto u \cdot x = u(x)$ définit une action transitive de SO(E) sur S. En déduire que pour tout $x \in S$, $SO(E)/SO(E)_x$ est en bijection avec S.
 - (2) On suppose que dim E=2.
- (a) Montrer que pour tout $x \in S$, $SO(E)_x = \{Id\}$, en déduire que SO(E) est en bijection avec S.
- (b) Montrer que tout sous-groupe fini d'ordre n de SO(E) est cyclique, donc isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
 - (3) On suppose que $\dim E = 3$.
- (a) Montrer que toute rotation $u \neq Id$ de SO(E) a exactement deux points fixes x et -x dans S. Ces points sont appelés les pôles de u.
- (b) Soit G un sous-groupe fini d'ordre n de SO(E) et notons P l'ensemble des pôles des éléments de $G \setminus \{Id\}$.

Montrer que $(u,x) \in G \times P \mapsto u \cdot x = u(x)$ définit une action de G sur P et que le nombre d'orbites pour cette action est r=2 ou r=3.

Actions de groupes Feuille 2

- (c) Montrer que si r=2 alors le groupe G est cyclique d'ordre n, donc isomorphe à $\mathbb{Z}/n\mathbb{Z}$.
- (d) [Facultatif] Montrer que si r=3 alors le groupe G est isomorphe soit à groupes \mathcal{D}_n (groupe diédral), soit à \mathcal{A}_4 , soit à \mathcal{S}_4 , soit à \mathcal{A}_5 .

Exercice 11. Soit G un groupe d'ordre 35 opérant sur un ensemble E de cardinal 19. On suppose que G ne fixe aucun élément de E. Combien y a-t-il d'orbites pour cette action?

Exercice 12. Soit G un groupe d'ordre 143 opérant sur un ensemble E qui contient 108 éléments. Montrer qu'il existe $x \in E$ tel que $g \cdot x = x$ pour tout $g \in G$.

Exercice 13. Soient G un groupe et H un sous-groupe de G.

- (a) Montrer qu'en posant $g \cdot (aH) = (ga)H$, où $a, g \in G$, on définit une action de G sur l'ensemble G/H des classes à gauche modulo H.
- (b) Montrer que cette action est transitive et déterminer le stabilisateur de aH.
- (c) On suppose que G est fini. Calculer le cardinal d'une orbite et retrouver le théorème de Lagrange.

Exercice 14. Soit G un groupe d'ordre p^2 où p est un nombre premier. Le but de cet exercice est de montrer que G est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou $(\mathbb{Z}/p\mathbb{Z})^2$.

- (1) Montrer que s'il existe $x \in G$ tel que $o(x) = p^2$, alors $G \simeq \mathbb{Z}/p^2\mathbb{Z}$. On suppose qu'il n'existe pas x dans G d'ordre p^2 .
- (2) Montrer que pour tout $x \in G \setminus \{e\}$, on a o(x) = p et $\langle x \rangle \subsetneq G$. Soit $e \neq x \in G$, et par la question (2), soit $y \in G \setminus \langle x \rangle$.
- (3) Montrer que $\langle x \rangle \cap \langle y \rangle = \{e\}$ (on pourra raisonner sur l'ordre de ce sous-groupe).
- (4) Montrer que $\varphi:\langle x\rangle \times \langle y\rangle \to G$ définie par $\varphi(u,v)=uv$ est un morphisme de groupes.
- (5) Montrer que le noyau de φ se réduit au singleton (e,e), et que donc φ est injective.
 - (6) Montrer que φ est un isomorphisme et qu'ainsi $G \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

Exercice 15. (Premier groupe non abélien)

- 1. Montrer que tout groupe d'ordre au plus 5 est abélien.
- 2. Montrer que \mathfrak{S}_3 est un groupe non abélien d'ordre 6.
- 3. Soit x = (123) et y = (12). Montrer que $\mathfrak{S}_3 = \{e, x, x^2, y, xy, x^2y\}$ et établir la table de multiplication de \mathfrak{S}_3 dans cette description. Le but de cet exercice est de montrer que \mathfrak{S}_3 est le seul groupe d'ordre 6 non abélien, à isomorphismes près. Soit donc G un groupe non abélien d'ordre 6.
- 4. Montrer qu'il existe des éléments x et y de G tels que x soit d'ordre 3 et y d'ordre 2.

- 5. Montrer que les six éléments e, x, x^2, y, xy, x^2y sont distincts, et que donc $G = \{e, x, x^2, y, xy, x^2y\}.$
- 6. Montrer que $yx \neq xy$ et en déduire que $yx = x^2y$.
- 7. Déterminer le produit de deux éléments de $G = \{e, x, x^2, y, xy, x^2y\}$.
- 8. Montrer que $G \simeq \mathfrak{S}_3$.

Exercice 16. On se propose de déterminer les groupes finis qui ont exactement trois classes de conjugaison. Soit G un groupe fini, d'ordre n, et supposons que G a exactement trois classes de conjugaison.

(a) En considérant l'opération de G sur lui même par conjugaisons, montrer qu'on a

$$1 = \frac{1}{n} + \frac{1}{a} + \frac{1}{b} \tag{2}$$

avec des entiers a > b > 0 tels que a|n et b|n.

- (b) Déterminer toutes les solutions de l'équation (1) en entiers $n \ge a \ge b > 0$ tels que a|n et b|n.
- (c) Donner la liste complète des groupes finis, à isomorphisme près, qui ont exactement trois classes de conjugaison.

Exercice 17. Soient G un groupe et H, K deux sous-groupes de G.

- (a) Montrer que les parties HgK, où $g \in G$, constituent une partition de G.
- (b) Soit $g\in G.$ Montrer que $N_g=\{(h,k)\in H\times K\,|\, hg=gk\}$ est un sous-groupe de $H\times K.$
- (c) On suppose que G est fini et que HK=G. Montrer que $|N_g|$ ne dépend que du |H| et |K| et non de $g\in G$.

Calculer sa valeur pour g = e et en déduire que $|G| \times |H \cap K| = |H| \times |K|$. Donner une autre démonstration de cette égalité lorsque $H \triangleleft G$.

Exercice 18. Soit G un groupe d'ordre 2p, avec p > 2 premier.

- (a) Montrer que G admet deux sous-groupes H et K d'ordre p et 2 respectivement.
 - (b) Montrer que G = HK, $H \triangleleft G$ et $H \cap K = \{e\}$.
 - (c) Montrer que G est isomorphe au groupe diédral D_{2p} .

Exercices complémentaires.

Exercice 19 (Polynômes symétriques). On se place sur un anneau intègre A et on considère l'anneau des polynômes $A[t_1, \ldots, t_n]$.

- 1. Définitions et notations
 - (a) Montrer que la formule $\sigma \cdot P(t_1, \dots, t_n) = P(t_{\sigma(1)}, \dots, t_{\sigma(n)})$ définit une action du groupe symétrique \mathfrak{S}_n sur $A[t_1, \dots, t_n]$.

(b) Un polynôme $P \in A[t_1, ..., t_n]$ est dit **symétrique** s'il est invariant par l'action du groupe symétrique \mathfrak{S}_n , c'est-à-dire si $\forall \sigma \in \mathfrak{S}_n$, on a $\sigma \cdot P = P$. Soit $aX_1^{i_1} ... X_m^{i_m} \in A[X_1, ..., X_m]$. L'ensemble des polynômes symétriques est noté \mathcal{S} .

On définit le **poids** du monôme comme $i_1 + 2i_2 + \ldots + mi_m$. Le poids d'un polynôme est le maximum des poids de ses monômes.

La k-ème fonction symétrique élémentaire est définie par :

$$s_k(t_1, \dots, t_n) = \sum_{1 \le i_1 < \dots < i_k \le n} t_{i_1} \dots t_{i_k}.$$

Soit $F(X) = (X-t_1)(X-t_2)\dots(X-t_n) \in A[t_1,\dots,t_n][X]$. Montrer que le coefficient de X^{n-j} dans F(X) est $(-1)^j s_j(t_1,\dots,t_n)$.

(c) Montrer que s_k est un polynôme symétrique.

2. Théorème fondamental

Théorème 1 Tout polynôme symétrique $P \in A[t_1, ..., t_n]$ s'exprime comme un polynôme en les fonctions symétriques élémentaires $s_1, ..., s_n$. Autrement dit, $S = A[s_1, ..., s_n]$.

- (a) Initialisation : Montrer que le théorème est vrai pour n=1.
- (b) **Récurrence sur** n: On suppose que le théorème est vrai pour n-1 et on veut le montrer pour n. Soit $P \in A[t_1, \ldots, t_n]$ un polynôme symétrique de degré d.
 - (i) Définir $\tilde{P}(t_1,\ldots,t_{n-1})=P(t_1,\ldots,t_{n-1},0)$. Montrer que \tilde{P} est un polynôme symétrique en t_1,\ldots,t_{n-1} .
 - (ii) Par hypothèse de récurrence, il existe donc un polynôme $Q \in A[X_1, \dots, X_{n-1}]$ tel que :

$$\tilde{P}(t_1,\ldots,t_{n-1})=Q(s_1(t_1,\ldots,t_{n-1}),\ldots,s_{n-1}(t_1,\ldots,t_{n-1})).$$

Montrer que $Q(s_1(t_1,\ldots,t_n),\ldots,s_{n-1}(t_1,\ldots,t_n))$ est un polynôme symétrique en t_1,\ldots,t_n .

(iii) Soit $P_1 \in A[t_1, \ldots, t_n]$ le polynôme

$$P(t_1,\ldots,t_n) - Q(s_1(t_1,\ldots,t_n),\ldots,s_{n-1}(t_1,\ldots,t_n)).$$

Montrer que $P_1(t_1, \ldots, t_{n-1}, 0) = 0$ et en déduire que t_n divise P_1 . Montrer que $t_1 \ldots t_n$ divise P_1 .

(iv) En déduire qu'il existe un polynôme symétrique P_2 tel que :

$$P_1(t_1,\ldots,t_n) = P_2(t_1,\ldots,t_n) \cdot s_n(t_1,\ldots,t_n).$$

Montrer que $deg(P_2) < deg(P)$.

- (v) Conclure par récurrence sur le degré d de P.
- (c) **Unicité** : Montrer que l'expression d'un polynôme symétrique en fonction des s_i est unique (on pourra utiliser le concept de poids défini en 1.(a)).

3. Application

- (a) Exprimer le polynôme symétrique $t_1^2 + t_2^2 + t_3^2$ en fonction des s_i pour n=3.
- (b) Montrer que le polynôme $t_1t_2^2 + t_1^2t_3 + t_2t_3^2 + t_1t_3^2 + t_2^2t_1 + t_3^2t_2$ est symétrique et l'exprimer en fonction des s_i pour n=3.

Exercice 20 (Colorations du cube). Soit C un cube. On note $\mathrm{Isom}^+(C)$ le groupe des isométries positives (rotations) de C. D'abord, on montre que $\mathrm{Isom}^+(C)$ est isomorphe à \mathfrak{S}_4 .

1. Grandes diagonales du cube :

- (a) Combien le cube possède-t-il de grandes diagonales (diagonales reliant deux sommets opposés)? Les noter D_1, D_2, D_3, D_4 .
- (b) Montrer qu'une isométrie positive du cube envoie une grande diagonale sur une grande diagonale.
- **2. Construction de l'application** ρ : On définit une application ρ : Isom⁺(C) $\rightarrow \mathfrak{S}_4$ qui à une isométrie g associe la permutation des grandes diagonales induite par g. Autrement dit, si $g(D_i) = D_{\sigma(i)}$, alors $\rho(g) = \sigma$.
 - (a) Montrer que ρ est un morphisme de groupes.
 - (b) Montrer que ρ est injectif. Indice : Supposer que $\rho(g) = Id$ et montrer que g fixe tous les sommets du cube.

3. Surjectivité de ρ :

- (a) Énumérer les différents types d'isométries positives du cube et leur nombre :
 - Identité.
 - Rotations d'angle π autour des axes passant par les milieux des arêtes opposées.
 - Rotations d'angle $2\pi/3$ et $4\pi/3$ autour des axes passant par les sommets opposés.
 - Rotations d'angle $\pi/2$ et $3\pi/2$ autour des axes passant par les centres des faces opposées.
 - Rotations d'angle π autour des axes passant par les centres des faces opposées.
- (b) Vérifier que le nombre total d'isométries positives est 24.
- (c) Montrer que ρ est surjectif en utilisant le fait que $|\mathrm{Isom}^+(C)| = |\mathfrak{S}_4| = 24$ et que ρ est injectif.

- **4.** Conclusion : En déduire que $\text{Isom}^+(C)$ est isomorphe à \mathfrak{S}_4 .
- 5. Action du groupe des isométries positives Soit C un cube et soit $\operatorname{Isom}^+(C)$ le groupe des isométries positives du cube, isomorphe à \mathfrak{S}_4 . Montrer que $\operatorname{Isom}^+(C)$ agit sur l'ensemble $\{1,\ldots,c\}^6$ des colorations des 6 faces du cube avec c couleurs par $g \cdot (v_1,\ldots,v_6) = (v_{g(1)},\ldots,v_{g(6)})$, où g(i) est l'indice de la face sur laquelle g envoie la face f_i .
- 6. Application de la formule de Burnside
 - (a) Calculer |Fix(g)| pour chaque type d'isométrie :
 - Identité.
 - Rotations d'angle π autour des axes passant par les milieux des arêtes.
 - Rotations d'angle $2\pi/3$ et $4\pi/3$ autour des axes passant par les sommets.
 - Rotations d'angle $\pi/2$ et $3\pi/2$ autour des axes passant par les centres des faces.
 - Rotations d'angle π autour des axes passant par les centres des faces.
 - (b) Appliquer la formule de Burnside pour montrer que :

$$r = \frac{c^2}{24} \left(c^4 + 3c^2 + 12c + 8 \right).$$

- 7. Exemple Vérifier directement qu'il y a 10 colorations distinctes du cube avec 2 couleurs.
- 8. Variantes
 - (a) Combien y a-t-il de colorations distinctes si on demande que deux sommets opposés ont la même couleur?
 - (b) Combien un tétraèdre régulier a-t-il de colorations distinctes avec c couleurs (son groupe d'isométries directes est isomorphe au groupe alterné \mathcal{A}_4)?