

Algèbre 2, L3
Examen du 15/01/2024 à 9h
Documents/calculatrices interdits

Exercice 1. Définir les notions d'anneau intègre, factoriel, euclidien, principal, Noethérien, et donner les relations d'implication entre ces propriétés.

Exercice 2. On considère la permutation $\sigma \in \mathcal{S}_{10}$ définie par

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 6 & 8 & 7 & 2 & 5 & 10 & 3 & 1 & 9 \end{pmatrix}$$
.

- 1. Décomposer σ en produit de cycles disjoints.
- 2. Calculer l'ordre de σ dans \mathfrak{S}_{10} .
- 3. Calculer σ^{4781} .
- 4. Calculer la signature de σ .

Exercice 3. On considère le groupe $(\mathbb{Z}/17\mathbb{Z})^{\times}$ des inversibles dans l'anneau $\mathbb{Z}/17\mathbb{Z}$.

- 1. Montrer que tout élément non nul de $\mathbb{Z}/17\mathbb{Z}$ est inversible. Quel est l'ordre de $(\mathbb{Z}/17\mathbb{Z})^{\times}$?
- 2. On rappelle que $(\mathbb{Z}/17\mathbb{Z})^{\times}$ est cyclique. Rappeler le théorème qui décrit tous les sous-groupes d'un groupe cyclique.
- 3. Montrer que $(\mathbb{Z}/17\mathbb{Z})^{\times}$ a exactement un sous-groupe d'ordre 8 et donner les deux descriptions vues en cours de ce sous-groupe.
- 4. Soit $\overline{x} \in \mathbb{Z}/17\mathbb{Z}$ non nul. Montrer que \overline{x} est un carré si et seulement si $\overline{x}^8 = \overline{1}$.
- 5. Soit \overline{x} une racine de $P(X) = X^6 + X^4 + X^2 + \overline{1}$ dans $\mathbb{Z}/17\mathbb{Z}$. Montrer que $\overline{x}^8 = \overline{1}$ puis que \overline{x} est un carré dans $\mathbb{Z}/17\mathbb{Z}$.
- 6. Déterminer les racines de P et écrire P comme produit de facteurs irréductibles dans $\mathbb{Z}/17\mathbb{Z}[X]$.

Exercice 4. Donner la liste de tous les groupes abéliens d'ordre 240 écrits selon leur décomposition cyclique.

Exercice 5. Soit p un nombre premier $(p \geq 2)$ et $\mathbb{Z}[i\sqrt{p}] \subset \mathbb{C}$ l'ensemble des nombres de la forme $a + bi\sqrt{p}$ avec $a, b \in \mathbb{Z}$.

- 1. Montrer que $\mathbb{Z}[i\sqrt{p}]$ est un sous-anneau de l'anneau $(\mathbb{C},+,\times)$.
- 2. Montrer que $\mathbb{Z}[i\sqrt{p}]$ est intègre.
- 3. Pour $z \in \mathbb{Z}[i\sqrt{p}]$, on note \overline{z} le conjugué complexe de z. Montrer que si $\overline{x} \mid \overline{y}$ dans $\mathbb{Z}[i\sqrt{p}]$, alors $x \mid y$ dans $\mathbb{Z}[i\sqrt{p}]$.
- 4. On note $N(z) = z\overline{z}$. Déterminer $N(a + bi\sqrt{p})$ en fonction de a et b.
- 5. Montrer que $\forall x, y \in \mathbb{Z}[i\sqrt{p}]$, on a N(xy) = N(x)N(y).
- 6. Soit $x \in \mathbb{Z}[i\sqrt{p}]$. Montrer que x est inversible dans $\mathbb{Z}[i\sqrt{p}]$ si et seulement si N(x) = 1.
- 7. En déduire que $\mathbb{Z}[i\sqrt{p}]^{\times} = \{-1, 1\}.$
- 8. Soit $x \in \mathbb{Z}[i\sqrt{p}]$. Montrer que si N(x) est un nombre premier, alors x est irréductible.
- 9. On suppose dans cette question que p = 7.
 - (a) Montrer que si x n'est pas inversible, et non nul, alors N(x) > 4.
 - (b) Montrer que $1 + i\sqrt{7}$, $1 i\sqrt{7}$ et 2 sont irréductibles (on pourra calculer $N(1 + i\sqrt{7})$, $N(1 i\sqrt{7})$ et N(2) et utiliser la question précédente).
 - (c) En écrivant 8 comme produits d'éléments irréductibles de $\mathbb{Z}[i\sqrt{7}]$, montrer que $\mathbb{Z}[i\sqrt{7}]$ n'est pas factoriel.
- 10. On suppose dans cette question que p=2. On rappelle qu'on a vu en cours que $\mathbb{Z}[i\sqrt{2}]$ est euclidien. Cette question est plus difficile que les précédentes.
 - (a) Montrer que $\mathbb{Z}[i\sqrt{2}]$ est factoriel.
 - (b) Soit $z \in \mathbb{Z}[i\sqrt{2}]$ non inversible. Montrer qu'il existe un entier $\ell \geq 1$ et des éléments $x_i \in \mathbb{Z}[i\sqrt{2}]$ irréductibles et tels que :

- $z = x_1 \cdots x_\ell$; $\forall i \ge 2$, $\operatorname{Re}(x_i) \ge 0$;
- Si $i \leq j$ alors $N(x_i) \leq N(x_j)$;
- Si $i \leq j$ et $N(x_i) = N(x_j)$ alors $|\operatorname{Re}(x_i)| < |\operatorname{Re}(x_j)|$.

Montrer de plus que l'entier ℓ et les éléments x_i sont uniques.

- (c) Soit $x \in \mathbb{Z}[i\sqrt{2}]$ tel que N(x) est un nombre premier. Montrer que x est premier dans l'anneau $\mathbb{Z}[i\sqrt{2}]$.
- (d) Soit $x \in \mathbb{Z}[i\sqrt{2}]$ tel que N(x) est un nombre premier et $y \in \mathbb{Z}[i\sqrt{2}]$ tel que N(x)|N(y) dans \mathbb{Z} . Montrer que x|y ou que $\overline{x}|y$ dans $\mathbb{Z}[i\sqrt{2}]$.
- (e) Soit p un entier premier, et soit $x,y\in\mathbb{Z}[i\sqrt{2}]$ tels que N(x)=N(y)=p. Montrer que $x = \pm y$ ou que $x = \pm \overline{y}$.
- (f) Donner l'unique décomposition de l'élément $7-17i\sqrt{2}$ en produit de facteurs irréductibles dont il est question dans la question (b).