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Chapitre 1

Déterminants

1.1 Permutations

1.1.1 Permutations : définitions

Définition 1.1 Une permutation de l’ensemble F,, = {1,...,n} est une bijection de F,, sur F,.

Exemples de permutations: Soit Fy = {1,2,3,4} et soit 0 € &4 définie par : o(1) = 4,
0(2) =3,0(3) =1 et 0(4) = 2. On écrira alors :

(1 2 3 4
774 31 2

On notera &,, 'ensemble des permutations.

Remarque 1.2 La donnée d’'un élément o de &, est définie par les données successives de
o(l) € F, 0(2) € B, \{oc(1)},--- ,0(n) € E,\ {o(1), - ,0(n—1)}.
On en déduit que card (S,) = nl.

Exercice de cours 1.1 Combien y a-t-il d’éléments dans &3 ¢ Donner la liste des éléments de
Gs.

Remarque 1.3 &,, muni de la loi de composition o est un groupe. En effet o est une loi interne.
En effet si (0,0") € &2, alors 000’ € &, car la composée de deuz bijections est une bijection.

La loi o est associative. En effet si (o,0',0") € &3, alors on a évidemment (o 0 0') 00" =
oo (o’ o).

L’application identité notée id (id(k) = k pour tout k € F,) est une permutation de F,, et est
l’élément neutre pour o. Pour tout 0 € &, on acold= Idoo =o0.

Tout élément o de &,, admet un inverse qui n’est rien d’autre que la bijection réciproque o 1.

Définition 1.4 &,, muni de la loi o s’appelle le groupe des permutations ou groupe sy-
métrique.
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Définition 1.5 On suppose que n > 2. Pour tout (i,j) € F2 tel que i < j, on appelle transpo-
sition échangeant i et j et on note 1;; la permutation de F,, définie par 7;;(i) = j, 7;;(j) =1 et
7,5 (k) =k, pour tout k € F,, \ {3, j}.

On écrira aussi 7;; = (4, ).

1 2 3

Exemple 1.6 7':(4 9 3 1

) est une transposition et on a T = (1,4).

Nous admettons maintenant le théoréme suivant qui nous sera utile par la suite.

Théoréme 1.7 Tout élément de S,, est produit de transpositions.

1.1.2 Signature d’une permutation

Définition 1.8 Soient 0 € &, et i,j € {1,---,n}. On dit que le couple (i,j) présente une
inversion pour o (ou est une inversion de o) si : i < j et o(i) > o(j). On note (o) le nombre
d’inversions de o.

Exemple 1.9 La permutation Id ne possédant aucune inversion, on a £(Id) = 0.

1 2 3 4
4 3 1 2
sont des inversions de o. En revanche (3,4) n’est pas une inversion. Donc £(c) = 5.

Exemple 1.10 Considérons o = ( ) Les couples (1,2), (1,3), (1,4), (2,3),(2,4),

Soit 7 = (i,4+ 1) une transposition élémentaire et soit o € &,,. Etudions I(co7). Pour k < [,
on a (k,l) € I(c o) ssi o(1(k)) > o(r(l)). Il y a deux cas de figure : si (k,l) # (i,7+ 1) alors
7(k) < 7(l). Alors (k,1) € I(oo7) ssi (1(k),7(1)) € I(0) ssi (k,1) € T(I(0)). Si (k1) = (i,i+ 1),

l

l
alors (k,l) € I(coT)ssi(i,i+1) & I(c). On a donc montré le résultat suivant :

Exemple 1.11 Soit 7 = (i,i + 1) une transposition élémentaire et soit o € &,,.
— Si(i,i+1) € I(o) alors I(coT) =7(I(0))\{(:+1,4)}. Dans ce cas l(coT) ={(c) — 1.
— Si(i,i+1) € I(0) alors [(coT) =71(I(0))U{(i,i+1)}. Dans ce cas (o oT) ={l(0)+ 1.

Exercice de cours 1.2 Montrer que pour tout o € &y, on a (o) < 6. Existe-t-il une permuta-
tion o € Sy telle que ¢(c) =6 7 Les trouver toutes.

Exercice de cours 1.3 Soit o la permutation de l’exemple 1.10. Vérifier le Théoréme 1.7 pour
o en écrivant o comme produit de cing transpositions de la forme (i,i+ 1) avec i € {1,2,3}.

On pourra utiliser le fait que pour toute permutation o', si o'(i) > o'(i+1), alors €(c’ o (i,i+
1)) = £(0’) — 1, et trouver ainsi des entiers i1,1i2,13,14,15 tels que £(o o (i1,41 + 1)) = £(0) — 1,
l(oo(i1,i1+ 1) o (ig,i2+ 1)) = L(o o (i1,91 + 1)) — 1, et ainsi de suite. On observera alors que
oo (i1,i1+1)o(ig,i9+1)0(i3,i3+ 1) o (ig,i4+ 1) 0 (i5,i5+ 1) est de longueur 0, donc est I’élément
neutre.
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Définition 1.12 On appelle signature de o € &,,, le nombre £(o) = (—1)4°),
Remarque 1.13 ¢(0) € {—1,1}.
Définition 1.14 Soito € S,. On dit que o est paire sie(c) = 1 et 0 est impaire sie(o) = —1.

Théoréme 1.15 Soient 0,0’ € &,,. Alors :

1. e(o) = H M.

1<i<j<n J—t
2. e(cod’)=¢(o)e(d’).
3. e(c™h) = ¢(0).
PREUVE:

1. Remarquons d’abord que :

® : F2\{(i,i);i€ F,} — F2\{(i,i);ic F,}
(i, 7) — (o(i), 0(4))

est une bijection. Donc :

\<idj<n  J "
Or
11 o(j) —o(i) _ 11 o(j) —o(i) 11 o(j) —o(i)
vy J—t L1 Jj—i 11 j—i
1<i#j<n 1<i<j<n 1<g<isn
2
ORI
1<icjen  J Y
Donc H M = +1. Puisque pour tout i < 7, M est positif s’il y
1<icj<n ! J
a inversion en (7, ) et négatif sinon, le signe de H M est (—=1)%9). On en
1<icj<n !
déduit que H oly) = o(i) = (=19 = ¢(0).

—i
1<i<j<n Y

2. Montrons la deuxiéme assertion.
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g(ocod’)= H Joal(j;:lﬂoa'(i)
1<i<j<n
o 2o —eed() o) - o)
- 1<E<n o'(j) —o'(i) j—i

S S LI P
1<i,5<n
o' (i)<o’(5)
Maintenant, ’application
{(i,5)/0'(1) <o'(j)} —
(4, 7) — (0'(@),0°(4))

est une bijection. Donc

1<i,j<n
o’ (9)<o’(4)

Ceci achéve la preuve de I'assertion 2.

3. De 2. on déduit immeédiatement que pour tout o € &, e(id) = e(coo™!) = e(o)e(c™!) =
1. Donc (o) et e(c~!) ont méme signe et e(o) = (o™ 1).

Proposition 1.16 Soit 7 une transposition de &,. Alors T est impaire.

PREUVE: Supposons que 7 = (4,7) avec i < j. Nous allons compter le nombre d’inversions en
tous les couples (k,1), k < 1. Si k #i,j et | # i, j, on n’a pas d’inversion en (k,[). Donc regardons
les cas ot I'un des deux entiers est ¢ ou j.

Si k < i,il n’y a pas d’inversion en (k, i) et (k,7). De méme si k > j, il n’y a pas d’inversion
en (i,k) et (j, k). Par contre si j —i > 2 et i < k < j, il y a inversion en (i,k) et (k,j), ce qui
fait 2(j — ¢ — 1) inversions pour tous les couples de cette forme. Enfin comme il y a inversion en
(1,7), on en déduit que £(7) =1+2(j—i—1)sij—i>2et (1) =1sij—i=1. On obtient le
résultat désiré puisque e(1) = (—1)47). 0

Exercice de cours 1.4 Montrer que la transposition (2,4), dans S5, est de longueur 3, donc
que cette transposition est bien impaire.
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1.2 Applications multilinéaires

Dans toute la suite, K désigne le corps des réels ou des complexes.

1.2.1 Applications multinéaires : définition
Définition 1.17 Soient E et F' deux espaces vectoriels sur K. On dit que l'application :

f + EP=FEx.---xFE — F

(xla""xp) — f(a"lv"'axp)
est une application multilinéaire ou p-linéaire si pour tout i compris entre 1 et p et pour
tous vecteurs T1i,...,T;—1, Tit1,..-,p fixés, Uapplication :
Tr+— f(xlv"' s Lj—1, Ly Lif1,y " >$p)

est une application linéaire de E dans F. Si de plus F' = K, on dit que f est une forme p-
linéaire.
Autrement dit on a pour tous vecteurs x et y de E :

f(xlv"' 7%717)\334‘#%33%17“' axp) =
)\f(ZUl,"' s Li—1y Ly i1y " ﬂxp) +,Uf(l'1, sy Li—1,Y, Ti4-1," 71:?)

Exercice de cours 1.5 Soit E =R? et F =R3, et soit p = 2. Montrer que Uapplication

f+ E*=R*xR? — R3
((x1,91), (w2,92)) > (0,21y2 — y122,0)

(1.1)

est bilinéaire, mais pas celle définie de fagon similaire par le vecteur (0, x1y1 — 22y2,0).
Remarque 1.18 Notons LP(E, F) l'ensemble des applications p-linéaires de E dans F. Etant
donné A € K, f,g € LP(E,F), on peut définir les deux opérations suivantes :

L(f+g)(@e, - ap) = flor, - mp) +g(, - @p).

2. ()‘f)(xla to ’xp) = )\f(iﬂl, T ’:EP)'

Alors il est facile de vérifier que LP(E, F) muni de ces deux opérations est un espace vectoriel
sur K.

1.2.2 Applications multilinéaires alternées

Définition 1.19 Soient E et F' deux espaces vectoriels sur K et v: EFP = Ex --- X E — F
une application multilinéaire. On dit que v est alternée si pour tout couple (i,7) € Fg tel que
i # j et pour tout (x1,---x,) € EP :

x; = x; implique v(xy, - ,xp) =0
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Exercice de cours 1.6 Montrer que lapplication f définie par (1.1) est alternée.

Proposition 1.20 Siv : EP = E X --- X EE — F est une application multilinéaire alternée,
alors pour tout couple (i,7) € {1,...,p}? tel quei < j, on a :

V(T Ty ey Ty ey Tp) = —0(T15 ey Ty oo Ty e, Tp)

PrREUVE: Comme v est multilinéaire et alternée on a :

0=v(x1,...,2 +xj,..., 2 +Tj,...,2p)
=0T, Ty Ty Tp) F V(X Ty Ty Tp)
+o(x1, . Ty Ty X)) FU(T, Ty, Ty, Tp)
=0(T1, . Ty Ty Tp) F V(X Ty Ty, Tp)
d’ot le résultat. 0

Exercice de cours 1.7 Montrer que le produit vectoriel sur R3 est une application bilinéaire
alternée. On pourra utiliser la formule qui définit ce produit vectoriel, (x1,y1,21) A (x2,y2, 22) =
(y122 — Y221, 212 — 22T1, T1Y2 — Tay1), ou la régle des trois doigts de Mazwell.

Remarque 1.21 L’ensemble AP(E, F) des applications multilinéaires alternées de E dans F' est
un sous-espace vectoriel de LP(E, F') pour les opérations définies dans la remarque 1.18.

Remarque 1.22 De la proposition 1.20, on déduit immédiatement que si T est une transposition
de Gp} ’U(CCl, T axp) = 8(7’)7](1}7(1), to 7:1:7(])))'

Cette remarque nous conduit & la proposition suivante :

Proposition 1.23 Soit v : EP = E x --- x E — F une application multilinéaire alternée et
soit 0 € &,,. Alors pour tout vecteur (x1,--- ,xp) € EP, on a :

v(xy, - 79Up) = 6(0)1}(360(1), T vxﬂ(p))

PREUVE: La preuve résulte d’une application directe du théoréme 1.7. En effet toute permutation
s’écrivant comme un produit de transpositions, il existe des transpositions 7i,..., 7 telles que
0 =711 007k De la remarque ci-dessus, il découle que :

U(xla T 7$p) = 5(7_1)'0(337'1(1)’ T 71:71(10))
= 5(7—1)5(7—2)”(x7'1072(1)7 T 7‘7:7'107'2(17))
=e(m)e(m) - s(Tk)v(xnoTQO..loTk(l), e 7$7107'20~-07'k(p))

= e(m)e(m2) -+ 5(7-/6)’0(330(1)7 T ,%(p))
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La deuxiéme égalité découle de la relation

(1, Up) = €(T)0(Ur(1) 5 Ura(p)
appliquée & y1, - - - , yp définis par y; = 7, ;).

et utilisant la propriété 2. du théoréme 1.15, on déduit que e(11)e(m2) - --e(1x) = e(mpomo---o0
71) = &(0), d’ou le résultat recherché. 0O

Proposition 1.24 Soit E un espace vectoriel de dimension n sur K.

Z11 Lin
1. Soit B = (ey,...,ey) une base de E. Pour tous vecteurs x1,...,z, de E, on note N
Tnl Tnn
leurs coordonnées respectives dans la base B. Définissons w par :
w E" — K
n
(1, %) — w(T1,...,%,) = Z (o) Hmo(i)’i.
ceG,, i=1
Alors w est Uunique forme n-linéaire alternée E™ — K vérifiant w(ey, ..., e,) = 1.
2. Vv e A"(E,K) onav=nuvep,...,epw.
3. dim(A™(E,K)) = 1.
. 1 3
Exercice de cours 1.8 Supposer que n = 2. Calculer w o) \4))
1 2 3
Exercice de cours 1.9 Supposer que n = 3. Montrer que w 21,131,115 =0.
3 4 7

PREUVE DE LA PROPOSITION : Montrons que w est une n-forme linéaire alternée. Soit z} € E
/
Ty,
14

de coordonnées | : | dans (er, - ,e,) et soient A, A" € K. Alors :

Wy, Az A N wn) = Y e(0)Toy - Ao@yi + Nahp)  Tann

a€6n
=A Z 5(0)%(1)1 T Zo@i)it To(n)n
oeG,
+ N Z 6(0—)'7}0(1)1 o x/g(l)z To(n)n
O‘GGn
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Donc w est multilinéaire. Montrons maintenant que w est alternée. Soit (i,5) € {1,...,p}? tel
que i < j. Supposons que x; = x;. Considérons 7 = (i, j) la transposition qui échange i et j.
Alors :

w(x17 o 71'7;7 “ . 7'%.]'? o e 7'%'71) = w(ajT(l)’ o ’xr(n))
= Z 5(0-):1:0(1)7-(1) “Lo(n)r(n)
0'6671
= Y &) ()r(r(1)) ** To(r(m)r(r(m))-
ceGy,

La derniére égalité provient de 1’égalité

n n n
Lo(j)r(d) = H Lo(k),r(k) = Lo(r(j)(r(5))
j=1 k=1 j=1
Or 7T o1 =1d, donc :
w(-l'l: Tyt s Tyt 7-7}71) = Z 5(0—)'%007(1)1 “Toor(n)n
UE@n
= - Z 5(0 ° T)‘,BO'OT(l)l *Loor(n)n
UEGn
car e(coT) = ¢e(0)e(r) = —¢(0) et e(1) = —1. Comme 0 — o o 7 est une bijection de &,, sur
lui-méme, on déduit que :
w(:l:h gyt gyt a:En) - - Z 5(0’)2170-(1)1 To(n)n
0'6671
- —W(l'l,"' y Lyt o 7$j7"' 7'%'71)
Donc 2w(x1,- -+, &, -+ , &, -+ ,&p) = 0 et comme K est R ou C, on déduit que
w(xla”' s Ljy e a‘ij"' 71"71) =0.

Donc w est alternée.

D’autre part si les vecteurs x1,...,x, sont les vecteurs eq,...,e,, de la base canonique alors
zij = 0sii#jet xy; = 1. Donc x501)1 - Ty # 0 si et seulement si o(i) = i pour tout i
compris entre 1 et n c’est-a-dire si et seulement si 0 = id. Donc :

W(elv"‘ aen):xll"'xnnzl

Soit maintenant v une forme n-linéaire alternée. Alors :
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n n n
0(3617"' 7xn) =v E Li11€41, g Ti52€i0, " g Li,nCiy,

i1=1 ip=1 in=1
n n n

= g g g wz‘llxizz"'%innv(eil,"' 7€in)
i1=114i2=1 in=1

Comme v est multilinéaire alternée, dés que pour k # [ on a i = i, alors v(e;,, -+ ,€;,) = 0.
Donc on ne va considérer que les termes ot tous les i; sont différents. Cela revient a dire que
I'application j — i; qui va de {1,--- ,n} dans lui-méme est une bijection donc une permutation
o de &,,. Donc en réécrivant i; = o(j), on a :

U(xh T 7xn) - Z To(1)1 """ xa’(n)nv(ea(l)a T 7ea(n))

€6,
= Z E(U)xo(l)l T xa(n)nv(eb T aen)
oce6y,
ou dans cette derniére égalité on a appliqué la proposition 1.23. Donc v = v(eq, ..., e,)w.
En particulier, si v est une forme n-linéaire alternée telle que v(eq,...,e,) = 1, on obtient
v = w, ce qui montre 'unicité de w affirmée au premier point.
Enfin comme v = v(ey, ..., e,)w, il est facile de voir que w est 'unique n-forme alternée telle

que w(eq,...,e,) = 1.
|

1.3 Deéfinition du déterminant et premiéres propriétés

1.3.1 Déterminant d’une famille de n-vecteurs

Notation 1.25 D’aprés la proposition précédente si E est un K-espace vectoriel de dimension
n muni d’une base B = (e1,--- ,en), alors il existe une unique n-forme linéaire alternée w telle
que w(ey, -+ ,en) = 1. Notons detg = w.

Définition 1.26 Soit E un espace vectoriel de dimension n muni d’une base B = (e1,...,ep).
Alors pour toute famille de n vecteurs (ui,...,uy) le scalaire detg(ui,...,u,) s’appelle le dé-
terminant de la famille (uq,...,u,) dans la base B.

Remarque 1.27 De la proposition 1.24 on déduit immédiatement que :
Vo € A"(E,K),Y(ur, -+ ,uy) € E" v(uy, -+ ,up) =v(ey, - ,ey)detg(ug, -, up)

PREUVE: En effet, la fonction v est n-linéaire et alternée, donc elle est égale & \ - detg pour un
certain scalaire A. En calculant sa valeur sur (ey,...,e,), on voit que A = v(eq,...,ey). 0

Proposition 1.28 Soit (uy,- - ,uy,) € E™. Alors la famille (uy,--- ,uy) est liée si et seulement
si detg(uy, -+ ,u,) =0.
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PREUVE: Supposons que (ug,--- ,uy) est liée. Alors il existe des scalaires Aq, -+, A, non tous
nuls tels que :
AMur+ -+ Aquy =0

Comme Ap,---, A\, non tous nuls, il existe ¢ € {1,--- ,n} tel que A\; # 0. Donc :
W= M= Y e
1<j<n Ai 1<j<n
JF#i J#i
et
detg(ur, -+ ,un) = Y ajdetg(ur, -+, ui1,u5,ui 1, ) =0
1<jsn
J#i

Réciproquement si detg(ui, -+ ,u,) = 0. Supposons par I’absurde que (ug,--- ,uy) est libre.

Comme F est de dimension n, B’ = (uq,--- ,u,) est une base de E. Donc, d’aprés la Remarque

1.27 appliquée a v = detp :
detg (ug, -+ ,up) = detpr(er, - ,en)detg(ur, - ,u,) =0
Ceci contredit le fait que detg (ug, -+ ,u,) =1 donc (ug,--- ,uy) est liée. 0

Exercice de cours 1.10 Montrer que les calculs de déterminants effectués dans les deux exer-
cices susvant la Proposition 1.24 sont en accord avec la Proposition 1.28.

1.3.2 Déterminant d’un endomorphisme

Proposition et définition 1.29 Soit E un espace vectoriel sur K de dimension finie n, f un
endomorphisme de E et v : E™ — K une forme n-linéaire alternée non nulle. Soit f*(v)
Uapplication de E™ dans K définie pour tous x1,--- , Ty, par :

)@y, -y an) = o(f(x1), -+ f@n)

Alors f*(v) est une forme n-linéaire alternée et f*(v) = Av. De plus \ ne dépend pas du choix
de v et s’appelle le déterminant de f. On note \ = det(f).

PREUVE: La preuve du fait que f*(v) est multilinéaire alternée est laissée au lecteur. La pro-
position 1.24 nous disant que ’espace des formes multilinéaires alternées est un espace vectoriel
de dimension 1, il s’ensuit que v étant non nul est une base de cet espace et donc f*(v) = Av.
Maintenant si v est une autre forme n-linéaire alternée non nulle, alors v = pwv et on en déduit
facilement que f*(v') = A’ ce qui prouve l'unicité de . 0O

Exercice de cours 1.11 Soit w : R? x R? — R la forme bilinéaire alternée définie par la

formule w((z1,11), (T2,y2)) = T1ys — x2y1 et soit f1, f2, f3 : R? — R? définies par fi(x,y) =
(2y,32), fo(z,y) = (z + 2y,y) et f3(x,y) = (22 +y, 4o + 2y). Calculer fiw, fiw et fiw.
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Proposition 1.30 Soit E un espace vectoriel de dimension n muni d’une base B = (e1,...,ey)

et soit f € L(E). Alors :
det(f) = detg(f(e1),..., f(en))

PREUVE: D’aprés la définition de det(f) on a
detg(f(e1),..., f(en)) = f*(detp)(e1,...,en) = det(f)detp(er,...,e,) = det(f).

O

Proposition 1.31 Soit E un espace vectoriel de dimension finie n sur K. Alors pour tout en-
domorphisme f de E et tout A\ € K on a :

det(\f) = \"det(f)
PREUVE: Soit B = (e1,- - ,e,) une base de E alors :

det(Af) = dets((Af)(e1), -+, (Af)(en)) = detp(Af(er), -+, Af(en))
= N'detp(f(e1), -, f(en))

Cette derniére égalité provient du fait que detg est une forme n-linéaire. On en déduit donc le
résultat recherché. =

Proposition 1.32 Soit E un espace vectoriel de dimension finie n sur K. Soient f et g deux
endomorphismes de E. Alors :

det(f o g) = det(f)det(g)

PREUVE: Soit v une forme n-linéaire alternée non nulle. Alors :

(fogyo)(zr, - an) = v((fog)(xr), - (f o g)(wn)

o(f(g(x1)),- -+, flg(zn))
det ()(g(:vl)--- )
det (

t(f)det(g)v(xy, -+, xn

Ceci permet de conclure que (fog)*(v) = det(f)det(g)v. Mais d’autre part, on a aussi (fog)*(v) =
det(f o g)v, d’ou le résultat. =

Exercice de cours 1.12 Pour les fonctions f1, fo, f3 de l’exercice précédent, calculer fio fa, et
det(f1 o fa) de deux maniéres différentes.

Proposition 1.33 Soit E un espace vectoriel de dimension finie n.
1. Alors det(1dg) = 1.

2. Un endomorphisme f de E est un automorphisme de E si et seulement si det(f) # 0. Si
1

det(f)

f est un automorphisme alors : det(f~!) =
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PREUVE: Etant donnée v une forme n-linéaire alternée non nulle on a de maniére immédiate
Id}v = v, donc det(Idg) = 1 ce qui montre le point 1.
Supposons maintenant que f est un automorphisme. Alors d’aprés la proposition 1.32 on a :

det(f o f71) = det(f)det(f!) = det(Idg) = 1

Ce qui montre que det(f) # 0 ainsi que la relation demandée.
Réciproquement supposons que det(f) # 0. Soit B = (eq,...,e,) une base de E. Alors

det(f) = detg(f(e1),-- -, f(en))

Comme det(f) # 0, d’aprés la proposition 1.28 (f(ey), ..., f(en)) est une famille libre de E, donc
une base de E. Il s’ensuit que f est surjective et comme les espaces de départ et d’arrivée sont
de méme dimension, f est un automorphisme. 0

Proposition 1.34 Soit E un espace vectoriel de dimension n sur K muni d'une base B =
(€1,...,en). Soient f € L(E) et A= (aij)i<ij<n la matrice de f dans B. Alors

n

det(f) = > (@) [J aotii

e, i=1

PREUVE: D’apres la proposition 1.30 det(f) = detg(f(e1),..., f(en)). D’autre part la j-iéme
colonne de A n’étant rien d’autre que les coordonnées dans la base B de f(e;), on déduit du
point 1. de la proposition 1.24 la relation souhaitée. 0

1.3.3 Déterminant d’une matrice

a1l o Qin
Soit A € M, ,(K). On note A =

an1 - Qnn

Définition 1.35 On note fa : K* — K" Uapplication linéaire définie par : fa(X) = AX. Le
déterminant de A est alors défini par la formule

det(A) = det(fa). (1.2)

Remarque 1.36
— On a évidemment det(I,) = 1. En effet :

det(I,) = det(Idgn) =1

n
— D’autre part, la Proposition 1.34 donne det(A) = Z e(o) Hag(i)i.
o€e6, i=1

Comme corollaire de la Définition 1.35 et des propositions 1.31, 1.32 et 1.33 on a les théorémes
suivants :
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Théoréme 1.37 Soit A € M, (K) et A € K. Alors :

det(AA) = A" det(A)
Théoréme 1.38 Soient A, B € M,,(K). Alors det(AB) = det(A)det(B).

Théoréme 1.39 Soit A € M, (K). Alors A est inversible si et seulement si det(A) # 0. Si A
1

det(A)”

est inversible alors : det(A™1) =

Nous verrons dans la partie 4.2 que I'on peut retrouver ce résultat de maniére différente.

Proposition 1.40 Soit E un espace vectoriel de dimension n sur un corps K muni d’une base
B et soit (u1,--- ,u,) une famille de n vecteurs. Soit P la matrice de (u1,--- ,up) dans B. Alors

detp(uy, -+ ,up) = det(P)

PREUVE: La matrice P est en effet la matrice, dans la base B, de I'application linéaire f qui
envoie les vecteurs de la base B sur les vecteurs uy, - - - , uy. Or, par définition, le déterminant d’une
matrice est le déterminant de I’application linéaire qui lui est associée. Donc det(P) = det(f).
Le résultat découle donc de la Proposition 1.30, qui donne det(f) = detg(f(e1), -+, f(en)).

1.3.4 Déterminant des matrices carrées 2 x 2

Soit A = (ZH 212>, alors det(A) = E (0)as(1)105(2)2- Il 1’y a que deux permutations
21 @22
g€eG2

dans &2, les permutations id = (} Z) et 7= <; ?) On a alors £(id) = 1 et e(7) = —1.

Donc :

Proposition 1.41 Soit A = (all alZ), alors
a1 a2

det(A) = a11a22 — A21G12.

1.3.5 Matrices transposées

Définition 1.42 Soit A = (ai;)1<i j<n- La transposée 'A de A est la matrice dont les coefficients
sont les a; j, avec a;; = aj;.

Exercice de cours 1.13 Soit A = <a b) € Moo (K). Montrer que det('A) = det(A).

cd

Proposition 1.43 Soit A € M, (K), alors det('A) = det(A).
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PREUVE: Soit A = (a;;)1<i j<n, 0 a “A = (di;)1<i,j<n avec a;j = aj;. Donc :

det( tA) = Z E(U)&U(l)l T da(n)n

ceG,

= Z 6(0—)6110(1) © Qpo(n)

O'EGn

On peut permuter les facteurs ai;(1),.; apo(n)- On a alors :

U1o(1) " " Gno(n) = Qo’'(1)a(o’(1)) """ Qo' (n)a(o’ (n))

pour tout ¢’ € &,,. Cest en particulier vrai si on prend ¢/ = ¢~!. On a donc :

det( tA) = Z 8(0’)(10—1(1)1 T Qo—1(n)n
c€6y,
mais (o) = (o~ !), donc
det( tA) = Z 5(0—_1)0’0*1(1)1 © Qe =1(n)n
JGGn
Or l'application o — o~ ! est une bijection de &,, dans lui-méme. Donc finalement,

det(“A) = Y &(0)ap(1y1 - Aanyn = det(A)
Ueen

O

Remarque 1.44 Le fait que det('A) = det(A) a pour conséquence que toutes les propriétés du
déterminant démontrées sur les colonnes restent vraies sur les lignes et vice versa.

1.3.6 Opérations sur les lignes et les colonnes

air v A
Soit A= | i € Mp(K).

apl  +°°  Gpp
On notera par la suite :

ai A1n

an1 Gnn

les colonnes de A et :

les lignes de A.

Alors det(A) = dete(C1(A), - ,Cn(A)) = det(tA) = dete('Li(A),- -+, L, (A)). Les deux
propositions qui suivent sont des conséquences immédiates du fait que dete est multilinéaire
alternée.
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Proposition 1.45 Si une colonne (ou une ligne) est combinaison linéaire d’autres colonnes (ou
lignes) alors det(A) = 0. En particulier, si deuz colonnes (ou deux lignes) sont égales, alors
det(A) = 0.

Exercice de cours 1.14 Soit A € M,, ,(K) une matrice telle que L1(A) = La(A). Donner les
détails de la prewve de [’égalité det(A) = 0.

Proposition 1.46 (Opérations sur les colonnes)

1. Siala colonne Cj(A) (ou a la ligne Li(A)) on ajoute une combinaison linéaire des autres
colonnes Z)\ka(A) (ou des autres lignes Z)\kLk(A)), le déterminant reste in-

k] ki
changé.

2. Si on permute deuz colonnes (ou deux lignes) de A, le déterminant change de signe.

3. Si on multiplie une colonne (ou une ligne) de A par p, alors le déterminant de A est
multiplié par p.

Exercice de cours 1.15 Montrer le cas particulier suivant de la Proposition ci-dessus :

detc(C1(A) +2C(A), C2(A), -, Cp(A)) = detc(C1(A), C2(A), - -, Cr(A)).

Exercice de cours 1.16 Calculer le déterminant de la matrice (é 2) Vérifier le résultat ob-

tenu a ’aide de la Proposition 1.45.

1.4 Développement d’un déterminant suivant une ligne ou une
colonne
1.4.1 Cofacteurs et comatrices

Soit A € M,,(K). On note A(i,7) la matrice de M,,_;(K) obtenue en supprimant la i-iéme
ligne et la j-iéme colonne de A.

3 3 7
Exemple 1.47 Soit A= 0 2 2 |. Alors :
-3 -1 -4

Définitions 1.48 Soit A € M, (K).
— On appelle cofacteur de A = (a;j)1<ij<n d’indice (1,7) le coefficient

aiy = (—1)"7 det(A(i, j))

— La matrice A = (ai;)1<ij<n de My(K) s’appelle la matrice des cofacteurs ou coma-
trice.
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3 3 7 ) -6 —6 6
Exercice de cours 1.17 Soit A la matrice | 0 2 2 |. MontrerqueA=1{ 5 9 —6
-3 -1 —4 -8 —6 6

Avant d’énoncer le théoréme principal, nous avons besoin des deux lemmes suivants :

10 -+ 0
0
Lemme 1.49 Soit B € M,,_1(K) et A= | . B . Alors det(A) = det(B).
0
PrEUVE: Considérons les applications :
o AAn—LlGK) — AdmlaK)
0
T
z1
X = ; — (X)) = )
LTn—1 )
Tp—1
et
Vo My (K — K

(X1, , Xpo1) = dete(E£r,P(Xq),- -+, ®(Xn-1))
Alors ® est une application linéaire et de maniére immédiate, V est une forme n — 1-linéaire
alternée. Soit C' = (E1, -, E]_,) la base canonique de M,,_11(K). Alors

V( 17 , ):detC(Elaq)(Ei)f" 7(1)( , )):detC(Elv"' aEn):l

» Hn—1 n—1
D’aprés la proposition 1.24, il existe une unique n — 1-forme alternée sur M,,_; ;(K) vérifiant
V(E],...,E],_;)=1.Donc V =dete et on a:
dEt(EU ::deWT(CH(ng"' 7C%—l(£n)
= detC[Elv (I)(CI(A))v T (I)(Cn—l(A))]

10 --- 0
0
: B
0
ce qui achéve la preuve. 0
air - ay—1 0 a0 am
ai-11 - ai—15-1 0 ai—1541 -0 Gi—1n
Lemme 1.50 Soit C' = (e73) ce Qij—1 1 Aij4-1 ce Qin
air11 o @ir1i-1 0 Gipijp1 0 Gitan
an1 T Gnj—1 0 Qpj+1 - Gnn

Alors det(C) = (—1)" det(A(i, 7)).
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PREUVE: Aprés avoir échangé la ligne i avec la ligne ¢ — 1, puis la ligne i — 1 avec la ligne i — 2, et
ainsi de suite jusqu’a la premiére ligne, et aprés avoir fait de méme avec les colonnes, on obtient
d’aprés les régles de la Proposition 1.46 :

I e - a1 G4 0 Qi
a0 A1 aij+1 -+ Qln
det(C) = (—1) |0 ai—11 -+ @io1jo1 Gi—1j41 0 Gimin

0 air11 -+ Git15-1 Git1j41 0 Qitln
0 anm T Anj—1 Anj+1 - Qnn
I an -+ ag-1 Gijp1 -0 Gin
0

= (- |, o
' A(i, j)
0
1 0 0
0

= (-1, - = (1) det(A(i. /)
: A(i, )
0

d’aprés le lemme précédent.

Nous sommes maintenant en mesure d’énoncer un théoréme fondamental sur le calcul des
déterminants qui sert constamment.
Théoréme 1.51 Soit A = (a;j) € M, (K) et k un entier tel que 1 <k < n. Alors :

n

1. det(A) = Z(—l)”kaikdet(zﬁl(i,k)) = Zaikdik. On dit qu’on développe suivant la

i=1 i=1
colonne k.
n ) n
2. det(A) = Z(—l)kﬂakjdet(/l(k,j)) = Zakjdkj. On dit qu’on développe suivant la
j=1 j=1
ligne k.
3 3 7
Exemple 1.52 Calculons det(A) =|0 2 2 |. Nous allons développer ce déterminant sui-
-3 -1 —4

vant la deuziéme colonne. Pour cela affectons chaque coefficients a;; de la matrice, du signe
(—=1)**7. On a alors :
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3 3 7 3t 3~ e
0o 2 2|=|0" 2t 27
-3 -1 —4 -3t 17 —4F
0 2 3 7 3 7
S Al Llefd
102 s . o . 3 7
0| _q 4@ été obtenue en supprimant la premiére ligne et la deuriéme colonne, _g oyl Em

supprimant la deuzieme ligne et la deuxiéme colonne et ’ la troisieme ligne et la deuxiéme

3
0 2

colonne.

Dot det(A) = —3-6+2-9+1-6=6.

PREUVE DU THEOREME 1.51: Montrons le 1. du théoréme. La k-iéme colonne de A peut sécrire :

1 0
=ai | .|+t ank

comme le déterminant est multilinéaire, on a immédiatement,

ain o ag-1 0 a1 0 amm
n ai—11 - Gi—1k—1 0 Gi—1k41 0 Gi—1n

det(A) = E ik | ain o @k—1 1 Qg o Gin
i=1 i1l Gipik—1 0 Gipik41 0 Gitln

anl e Ank—1 0 Ank+1 o Ann

Et d’aprés le lemme 1.50, on a :

n

det(A) =Y (—1)"Fapdet(A(i, k).
=1

D’autre part, comme det(4) = det(A), on obtient immédiatement 1’assertion 2.

Proposition 1.53 (Régle de Sarrus) On a :

a1l a2 a3
a1 Q22 G23| = @11022033 + (21032013 + 431012023
a31 asz as3

— (a13a22a31 + agzaszain + aszaizazl)
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La preuve s’obtient en développant par rapport a n’importe quelle ligne ou colonne.

Remarque 1.54 On obtient facilement le résultat en écrivant :

a1l a2 aig
a1 a2 a3
a31 asz2 ass3
ai; a2 aiz
= (11022033 + A21032G13 + 31012023
a1 a2 a3

— (a13a22a31 + azzaszai1 + azzaizazn)
Attentlon ' La régle de Sarrus fonctionne uniquement pour les matrices (3, 3).

1.4.2 Matrices triangulaires

Définition 1.55 Une matrice A = (a;;) est dite triangulaire si elle est triangulaire inférieure
(te i < j = a;j = 0) ou triangulaire supérieure (ie i > j = a;; =0).

Proposition 1.56 Soit A = (aij)i<ij<n  une matrice triangulaire. Alors det(A) = a1 - ann.

PREUVE: On démontre le résultat par récurrence sur n pour les matrices triangulaires supé-
rieures. La relation est vraie pour n = 1. Supposons maintenant qu’elle est vraie pour les matrices
de M,,(K) pour un entier n > 1 et montrons qu’elle reste vraie pour les matrices de M1 (K).
Soit A une matrice triangulaire supérieure de M, 1(K). Alors

a/ll a12 DR ... aln
0 a2
A=[1 0
0 0 - 0 ant1ntt
En développant suivant la derniére ligne on a :
a1l a12 a1n
0 a9
det(A) = ant1 nt1 0
0 0 0 ann

Par hypothése de récurrence le résultat étant vrai pour les matrices de M, (K) on obtient le

résultat voulu.

D’autre part, comme pour toute matrice carrée A, det(A4) = det(?A4), la proposition reste
vraie pour les matrices triangulaires inférieures.

O
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123
Exercice de cours 1.18 Calculer le déterminant de la matrice |0 2 3
003

1.4.3 Matrices inverses et déterminant
Théoréme 1.57 Pour tout A € My, (K), on a :
AlA = 'AA = det(A)I,

PREUVE: Posons A = (a;;) et A = (bj1,). Alors bjj, = ay;
Soit C'= A'A. Montrons que C = det(A)I,,. Pour cela posons C' = (c;).

a]_]_ ------------------ a/ln
all ------------------ a/Zn
Soit D(i, k) la matrice | g, 1, ..oooooiiiiil A1
azl .................. ai’n,
a/k+11 ------------------ ak+1n
a/’)"Ll ------------------ ann

D’aprés le 1. du théoréme 1.51, on a

n

det(D(i, k) = > (—1)aydet(A(k, §)) =Y asji;
j=1

J=1
n

= aibj = cik
J=1

Si ¢ = k, alors D(i,k) = A, donc ¢;; = det(A). Si i # k, les lignes k et i de D(i, k) sont les
mémes. Donc ¢; ;; = 0. On en déduit donc que C' = det(A)I,.

O
3 3 7
Exercice de cours 1.19 Soit A la matrice | 0 2 2 | . Montrer par le calcul que
-3 -1 —4

A'A = TAA = det(A) ;.

On en déduit alors immeédiatement le corollaire suivant :

Corollaire 1.58 Soit A € M, (K). Alors A est inversible si et seulement si det(A) # 0 (résultat
tA
déja énoncé dans le théoreme 1.39). Si A est inversible, A~ = ————

det(A)’
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-3 2 -1
Exercice de cours 1.20 Soit A la matrice 3 1 2 . Calculer det(A). Monter que
2 0 1

A est inversible, et que son inverse a des coefficients entiers. Calculer A~ par deux méthodes
différentes.

1.5 Formules de Cramer

On rappelle que si A € M, (K) et (S): AX =Y est le systéme de n équations a n inconnues
associé, alors les propriétés suivantes sont équivalentes :

— (9) est un systéme de Cramer.

— (5) admet une solution et une seule.

— 1g(A) = n.

— A est inversible.

— det(A) # 0.

~ X
¢ 1

det(A)' Sion note X =

Si (S) est de Cramer, la solution est donnée par X = A=Y =
In
Y
et Y = | : |, on a alors la proposition suivante :

Yn

Proposition 1.59 (Formules de Cramer) Si (S) est de Cramer, alors :

aipr - G13—-1 Y1 A1 Aln
e — n1 *° Qpi—1 Yn Qpi+1 - Aann
L det(A)
PREUVE: On développe le déterminant de la proposition par rapport a la i-iéme colonne :
1 air - ali—-1 Y1 ar+1 o Aln
det(A) :
anl **° Opi—1 Yn OQpi+1 - Ann
1 n
= (1) det(A(j, i

tAY
det(A)

1 ailr - Gnl (1

Posons A = (d;;). Ona X = A™'Y = , donc :

T A1p  °  Qpp Yn
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On obtient donc

det Zy] 1) 7det(A(j, 1)

aﬂ = ;.

1.6 Rang d’une matrice

Définition 1.60 (Matrice extraite) Soit A € M, ,(K), A = (a;j). Soit r < p et s < q. On
dit que A" € M, s(K) est une matrice extraite de A si A’ est de la forme A’ = (azm)1<k<r ot

1<i<s
1< <<, <petl < <---<Js<Qq.

4 -1 3 6 7
. 2 1 5 -1 0
Exemple 1.61 Soit A = 3 6 8 2 4
1 1 2 -1 1
4 3

Alors la matrice A’ = <

3 3 2> est une matrice extraite de A.

Rappel 1.62 Soit A € My, 4(K). Le rang de A noté rg(A) est le rang de la famille des vecteurs
colonnes de A. On a rg(A) = rg('A). Le rang de A est donc aussi le rang de la famille des
vecteurs lignes de A.

Théoréme 1.63 Soit A € M, ,(K). Alors A est de rang r si et seulement si :
1. 1l existe une matrice carrée A" extraite de A de format (r,r) telle que det(A") # 0.

2. Pour tout s > r, toute matrice carrée A" de format (s, s) extraite de A vérifie det(A”) = 0.

PREUVE:
1. Montrons tout d’abord que si A est une matrice de M,, ;(K) de rang r, alors il existe une
matrice carrée A" extraite de A de format (r,r) telle que det(A’) # 0 :
Comme rg(A) = rg(C1(A),...,Cy(A)) = r, on peut extraire de (C1(A),...,Cy(A)) une
famille libre (Cj, (A),...,Cj,.(A)) de r vecteurs (j1 < --- < jp).
Notons A" la matrice de M,,,.(K) dont la ¢-iéme colonne est Cj,(A). Alors :

r=1g(A") = 1g('A’) = rg(L1(A'), -, Lp(A))

Donc on peut extraire de la famille (Li(A’), -+, Ly(A’)) une famille libre de r vecteurs
(Liy (A", -+ L; (A") (i1 < --- < ir). Soit A” la matrice de M,.(K) dont la k-iéme ligne
est L;, (A’). En fait A” = (ai,;,) 1<k e<r €t 1g(A”) = r. Donc det(A”) # 0.

2. Montrons maintenant que s’il existe une matrice carrée A’ € M(K) extraite de A telle
que det(A") # 0 alors rg(A) > s
Tout d’abord A" = (a;, j,)1<ke<s avec i1 < --- <iget ji < --- < js.
Puisque det(A’) # 0 rg(A’) = s et (C’l(A ), -+, Cs(A")) est une famille libre. Mais cela
implique que la famille (C}, (A),---,C},(A)) est libre. Donc rg(A) > s.



1.6. RANG D’'UNE MATRICE

Des points 1. et 2. on déduit de maniére immédiate le théoréme.

2
Exemple 1.64 Soit A= | —1
1

2 3 5

-1 0 -1

1 2 3

Donc tous les déterminants de matrices (3,3) extraites de A sont nuls, donc rg(A) < 3.

2

3

4

1. Alors :

3

4 2 3 4 2 5 4
1l=|-1 0 1|=|-1 -1 1/=0
3 1 2 3 1 3 3

27

Pour montrer que A est de rang 2, il suffit de trouver une matrice (2,2) extraite de détermi-

nant non nul. Or

donc rg(A) = 2.

2 3
i
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Chapitre 2

Réduction des endomorphismes

Dans toute la suite, K désigne le corps R ou C et E est un espace vectoriel sur K de dimension
finie n D’autre part L(F) désigne le K-espace vectoriel des endomorphismes de E.

2.1 Sous-espaces propres et diagonalisation

Etant donné un espace vectoriel E sur un corps K de dimension finie, les endomorphismes
les plus simples sont les homothéties f = Aldg. La matrice de ces endomorphismes est la méme
dans toutes les bases de E. C’est une matrice diagonale avec des A sur la diagonale et des 0
partout ailleurs. Autrement dit il n’y a pas de direction privilégiée.

Etant donné maintenant un endomorphisme v quelconque, on va essayer dans ce chapitre de
le "dévisser" en "cassant" 'espace E en une somme directe de sous-espaces stables (précisément
les sous-espaces propres) sur lesquels u se comportera comme une homothétie. Si cela est possible
en prenant une base dans chacun de ces sous-espaces et en les réunissant, on obtiendra une base
de E dans laquelle la matrice de u sera diagonale.

2.1.1 Valeurs propres, vecteurs propres

Définition 2.1 Soient v € L(E) et A € K. Sl existe un vecteur non nul z de E tel que
u(x) = Az, alors on dit que :

1. X est une valeur propre de u.
2. x est un vecteur propre de u associé ¢ \.

On appelle spectre de u et on note Sp(u) 'ensemble des valeurs propres de u.

Remarque 2.2 1. 1l résulte de la définition qu’un vecteur propre n’est jamais nul.

2. X\ est une valeur propre de u si et seulement si Ker(u — Adg) # {0}.
En effet A est une valeur propre de u si et seulement si il existe un vecteur non nul x de E tel
que u(x) = Ax. Or 0 = u(x) — Az = (u — AIdg)(x). Il s’ensuit que A est une valeur propre de u

si et seulement si Ker(u — Adg) # {0}.

29
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Définition 2.3 Soient A € M, (K) et A € K. Sl existe un vecteur colonne non nul X de
M, 1(K) tel que AX = \X, alors on dit que :

1. X est une valeur propre de A.
2. X est un vecteur propre de A associé a .

On appelle spectre de A et on note Sp(A) 'ensemble des valeurs propres de A.

Exercice de cours 2.1 Soit A = ( 3 2 ) Déterminer le spectre de A. On pourra résoudre

-4 -3
le systeme

3r+2y = M
—4dx -3y = My,

dépendant du parameétre .

Remarque 2.4 Soient B une base de E, uw € L(E) et A = Matg(u). Alors Sp(u) = Sp(A). Plus
précisément :
1. X est une valeur propre de u si et seulement si A est une valeur propre de A.

2. x est un vecteur propre de u si et seulement si X = Matg(x) est un vecteur propre de A.

Définition 2.5 Soit A = (aij)1<ij<n une matrice carrée de M, (K). On appelle trace de A le

scalaire : .
t?”(A) = Z (077
i=1

Proposition 2.6 Soient (A, B) € M, (K)?. Alors tr(AB) = tr(BA).

Exercice de cours 2.2 Donner une preuve de ce résultat. En cas de difficulté, commencer par
le cas ou n = 2.

Proposition et définition 2.7 Soientu € L(E) et B une base de E. Alors le scalaire tr(Matp(u))
ne dépend pas de la base choisie et s’appelle la trace de u. On le note tr(u).

PREUVE: Soit B’ une autre base, et soit P la matrice de passage de B a BB’. Soient A = Matg(u)

et A’ = Matg (u). On a A’ = P71AP, donc tr(4') = tr(P~1AP) = tr(APP~!) = tr(A). 0O
Exercice de cours 2.3 Soit A la matrice de l’exercice 2.1, A = (_34 _3> et soit x un réel.

Montrer que det(A — xly) = 2% — 1.
Proposition et définition 2.8 Soit uw € L(E). La fonction

Xe : K — K
x +— det(u — xldg)

est une fonction polynomiale de degré n. De plus :
u(X) = (=) X" + (=1)" L tr(w) X" + -+ det(uw)

Xu S’appelle le polynéme caractéristique de u.
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Proposition et définition 2.9 Soit A € M, (K). La fonction

x4 @ K — K
x — det(A—xl)

est une fonction polynomiale de degré n. De plus :
xa(X) = (=1)"X" + (=) (A X" 4+ det(A)
xA s’appelle le polyndme caractéristique de A.

Remarques 2.10
— Soient B une base de E, uw € L(F) et A= Matg(u). Alors x4 = Xu.
— Dans le cas n = 2, observer que x,, est déterminé par tr(u) et det(u).

Exercice de cours 2.4 Vérifier que ces énoncés sont compatibles avec le calcul que vous avez
fait dans l’exercice 2.3.

PREUVE DES ENONCES 2.8 ET 2.9 : Soit A = (a;j)1<i,j<n- Alors :

XA(:E) = det(A - l‘] Z H Ao (i)i — a i) z)
i=1

O'EGn

Chacun des produits H(ag(i)i — Z04();) est une fonction polynomiale en = de degré inférieur ou
i=1
égal & n. Il en est de méme de leur somme et y 4 est un polynéme de degré au plus n. Or :

n

XA(x) = Z H Ao ()i — cr z)z) H(all - $)
=1

aGGn\{Id} i=1

Remarquons que si 0 € &, \ {Id}, alors il existe 7 € {1,---,n} tel que o(j) # j. En posant
k=0"1(j), onak#jeto(k)#k. Donc 6,(;; = 6y(k)x = 0. Ainsi :

n n

H(aa(i)i — T0o(s)i ) = o(4)j % H Ao ()i — Tq i)i)
i=1 Z-:
et donc pour chaque o € &, \ {Id}, H — X04(;);) est une fonction polynomiale de degré au
i=1

n
plus n — 2 et il en est de méme de Z (o) H(aa(i)i — Z05(j)i). Or comme H (ai; — x) est
oe&,\{1d} i=1 i=1
de degré n il s’ensuit que x4 est de degré n et que les coefficients de z™ et "' dans y, sont
n

les coefficients de z™ et 2"~ ! dans H(aii — ). Donc les coefficients de z™ et 2™~ dans x4 sont

n
respectivement (—1)" et (—1)"~! Za” = (—=1)" ttr(A).
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Le terme constant de x4 est x4(0) = det(A). Ceci prouve I’énoncé 2.9. La preuve de 2.8 est
une conséquence immédiate de la remarque 2.10 et de la proposition et définition 2.7. =

En raison des remarques 2.4 et 2.10, on se contentera dans la majorité des cas d’énoncer les
résultats dans le cadre des endomorphismes.

Proposition 2.11 Soit u € L(E). Alors X\ € Sp(u) si et seulement si X est racine de xy.

PREUVE: On a vu d’aprés la remarque 2.2 que A est valeur propre de w si et seulement si
Ker(u — Mldg) # {0}. Or les 4 assertions ci-dessous sont équivalentes :

1. Ker(u — \ldg) # {0}

2. u — Aldg n’est pas injective.

3. u — Mldg n’est pas un isomorphisme.

4. det(u — Aldg) = 0 (voir proposition 1.33).

Donc A est valeur propre de u si et seulement si x,(\) = 0. O

Exercice de cours 2.5 Résoudre a nouveau l’exercice 2.1 en utilisant le polynéme caractéris-
tique de A.

Corollaire 2.12 Tout endomorphisme u de E a au plus n valeurs propres.

Définition 2.13 Soient u € L(E) et A une valeur propre de u. On dira que X est une valeur
propre d’ordre m si A est une racine d’ordre m de x,. L’entier m s’appelle la multiplicité de A
et sera noté m(A).

Exercice de cours 2.6 Déterminer le spectre et la multiplicité des valeurs propres des matrices

3 1 2 0 —-10
sutvantes : B = 1 2 1 et C = 2 3 0
-2 -1 -1 -3 -31

2.1.2 Sous-espaces propres

Définition 2.14 Soient uw € L(E) et A une valeur propre de u. Le sous-espace vectoriel Ex(u) :=
Ker(u — Adg) s’appelle le sous-espace propre associé a la valeur propre \.

Remarque 2.15
1. Si X\ est une valeur propre de u, on a toujours Ey(u) # {0}.
2. Ex(u) \ {0} est l’ensemble des vecteurs propres de u.

3. Les sous-espaces propres de u sont stables par u (pour toute valeur propre \, u(Ex(u)) C

Définition 2.16 Soit A € M,,(K) et A une valeur propre de A. Le sous-espace vectoriel My(A) :=
Ker(A — M,) de My ,(K) s’appelle le sous-espace propre associé a la valeur propre \.
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Exercice de cours 2.7 Calculer les sous-espaces propres des matrices A, B et C' des exercices
2.1 et 2.6.

Exercice de cours 2.8 Montrer que u(Eyx(u)) C Ex(u) pour toute valeur propre X de w.

Proposition 2.17 Soient u € L(E) et X\ une valeur propre de u. Alors :

1 < dim(Ey(u)) < m(A)

PREUVE: Posons p = dim(E)(u)). Soit (e1,--- ,ep) une base de E)(u) que 'on compléte par
€p+1, " ,€n pour obtenir une base B de E. Dans ce cas on a :
A0 - 0 aip1 - amm
: . .0 : :
Matp(u)= |0 ... 0 )\ appr1 - Gpn
0 -« 0 Gpi1ps1 - Gprin
0 -« 0 anpi1 - Gnn

Le polynéme caractéristique s’écrit donc :
Xu(®) = (A = 2)Pxu ()
ot M = (aij)p+i<i,j<n. Donc (A — z)P divise x, et p < m(A). 0O

Théoréme 2.18 Soit u € L(E). Alors les sous-espaces propres de u sont en somme directe.

PREUVE: Soient A1, --- , A, les valeurs propres de u. Le but est de montrer que si (vq,--- ,v,) €
Ey (u) x -+ x Ey, (u) et v +--- + v, = 0 alors v; = 0 pour tout ¢ € {1,--- ,r}.
On va procéder par récurrence en montrant que Ey, (u),---, Ey,(u) sont en somme directe

pour tout j € {1,---,r}.
Pour j = 1, la propriété est vraie.
On suppose maintenant la propriété vraie au rang j € {1,--- ,r — 1}. Montrons qu’elle est
vraie au rang j + 1.
Jj+1
Soit (v1,- -+ ,vj41) € Ex (u) X - x By, (u) tel que Zvi = 0. Alors :
i=1

j+1 j+1 j+1
U (Evl> = Zu(vz) = Zx\ivi =0
i=1 i=1

i=1

Donec :
j+1 j+1 j+1 j

0= Z /\i'Uz' — /\j+1 Z’Ui = Z(/\z — Aj+1)’l)z' = Z()\Z — )\j+1)vi
i=1 i=1

i=1 i=1
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Or pour tout ¢ € {1,---,j}, (A\i = A\jy1)vi € E),(u). Comme par hypothése de récurrence,
Ey, (u),- -+, By, (u) sont en somme directe, il s’ensuit que pour tout i € {1,---,j}, (Ai—Aj11)vi =
0. De plus A; — Aj41 # 0 pour tout 7 € {1,---,j}. Donc :

V1 =+ =10 = 0
Jj+1
et Z v; = vj41 = 0. Donc Ey, (u),- -, Ex,, (u) sont en somme directe. Par récurrence sur j la
i=1
propriété est vraie pour tout j € {1,--- ,r}. 0O

Exercice de cours 2.9 Vérifier que les espaces propres obtenus pour A, B et C' dans l’exercice
2.7 sont en somme directe.

2.1.3 Endomorphismes et matrices diagonalisables

Théoréme 2.19 Soit u € L(E). Alors les propositions suivantes sont équivalentes :
1. 1l existe une base B de E telle que Matp(u) soit diagonale.
2. Il existe une base B de E constituée de vecteurs propres de u.
3. F est la somme directe des sous-espaces propres de u.

4. Xu est scindé sur K (i.e. xy a toute ses racines dans K) et pour toute valeur propre de u,

dim(E(u)) = m(N).
PREUVE: 1= 2. Il existe une base B = (e1, - ,e,) de E telle que :

aq 0
Matg(u) =
0 oy,
Par définition de la matrice d’'un endomorphisme dans une base, on a pour tout i € {1,--- ,n},
u(e;) = a;e; ce qui prouve 2.
2 = 3. Soit B = (e, -+, e,) une base formée de vecteurs propres de u. D’aprés le théoréme
2.18 les sous-espaces propres sont en somme directe et B = (e1,--- ,e,) est une famille libre de

@EAi (u). Donc :
i=1
dim (@ E,, (u)) > n = dim(F)
i=1

,
et £ = @E)\l(u)
1=1

3 = 1et 3 = 4. Soient A1, -, )\, les valeurs propres de u. Posons n; = dim(Ejy,(u)).
Soient By, --- , B, des bases respectivement de Ejy, (u),--- , Ey, (u). Comme par hypothése £ =
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T

T
@ E),(u), B= U B; est une base de E constituée de vecteurs propres. Donc :
=1

i=1
M 0 oo e e o0
0 :
A1
Matg(u) =
Ar
: . 0
(U | D W

ce qui prouve 1.

D’autre part x,(x) = (A — )™ -+ (A, — x)™. 1l s’ensuit que le polynéme est scindé et que
la multiplicité des valeurs propres vérifie m(\;) = n; = dim(Ey, (u)) ce qui prouve 4.

4 = 3 On suppose que x,, est scindé sur K et que pour toute valeur propre de u, dim(E)(u)) =
m(A). Donc :

xule) = [JOv =y
i=1
et dim(Ey,(u)) = m(A;). On a donc :

dim (Q_? Ey, (u)) = Zl dim(Ey,) = Y _m(\) =n

=1

T
Par conséquent @ E),(u) =E. 0
i=1
Exercice de cours 2.10 Pour les matrices A, B,C ci-dessus et pour chaque valeur propre A,
déterminer dim Ey et m(\).

Définition 2.20 Soit u € L(E). On dit que u est diagonalisable si l'une des 4 conditions
équivalentes du théoreme 2.19 est vérifiée.

Exercice de cours 2.11 Les endomorphismes de K™ associés aux matrices A, B et C ci-dessus
sont-ils diagonalisables ?

Définition 2.21 Soit A € M, (K). On dit que A est diagonalisable si A est semblable a une
matrice diagonale. Autrement dit A est diagonalisable s’il existe une matrice P € GLy,(K) et une
matrice diagonale D € M,,(K) telles que : D = P~1AP.

Remarque 2.22 Lorsqu’on voudra insister sur le fait que la matrice P est a coefficients dans
K, on précisera que A est diagonalisable sur K. Ainsi, par exemple, une matrice a coefficients
dans R pourra étre diagonalisable sur C mais non sur R : ceci signifie qu’il existe P € GL,(C)
telle que P~YAP est une matrice diagonale & coefficients complexes, mais qu’il n’existe pas de
matrice P € GL,(R) telle que P"*AP est une matrice diagonale a coefficients réels.



36 CHAPITRE 2. REDUCTION DES ENDOMORPHISMES

Exercice de cours 2.12 Donner un exemple d’une matrice carrée d’ordre 2 d coefficients réels
dont les valeurs propres sont deux nombres complexes non réels (on pourra d’abord choisir un
polyndéme x ayant deux racines complexes, puis une matrice dont le polyndme caractéristique est
X ). Montrer que cette matrice est diagonalisable sur C mais pas sur R.

Exercice de cours 2.13 (Exercice facultatif) Soit A une matrice a coefficients réels et A
une valeur propre réelle de A. Montrer que les espaces propres réel et complere de A pour la
valeur propre A ont la méme dimension.

Soit A € M,(R) de polynome caractéristique scindé sur R. Montrer que A est diagonalisable
sur R si et seulement si elle est diagonalisable sur C.

Remarque 2.23

1. Soient B une base de E, u € L(E) et A = Matg(u). Alors u est diagonalisable si et
seulement si A est diagonalisable.

2. Si A est diagonalisable alors il existe P € GL,(K) telle que D = P™LAP est diagonale.
Dans ce cas (C1(P),---,Cp(P)) est une base de M,, 1(K) constituée de vecteurs propres
de A.

Corollaire 2.24 Soit u € L(E). Alors si x,, est scindé sur K et si toutes les racines de x,, sont
simples alors u est diagonalisable.

Exercice de cours 2.14 Donner un exemple d’endomorphisme u diagonalisable mais tel que
les racines de x, ne sont pas simples.

2.1.4 Calcul des puissances d’une matrice

Soit A € My (K). Si A est diagonalisable alors il existe une matrice diagonale D € My (K) et

o 0
P € GLi(K) telles que D = P~1AP. Or on sait calculer D". En effet si D = ,
0 Qay,
of 0
alors D™ = . D’autre part on peut montrer par récurrence que :
0 ay

D" = (P7'AP)" = p7lA"P

d’otu :
A" = ppnpt

Exercice de cours 2.15 Calculer les puissances de la matrice A de l’exercice 2.1.
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2.2 Trigonalisation et théoréme de Cayley-Hamilton

2.2.1 Endomorphismes trigonalisables
Définition 2.25 Soit uw € L(E). On dit que u est trigonalisable sl existe une base B de E

telle que Matg(u) est triangulaire supérieure.

Définition 2.26 Soit A € M, (K). On dit que A est trigonalisable sl existe P € GL,(K)
telle que P~YAP soit triangulaire supérieure.

Remarque 2.27 Soient B une base de E, u € L(E) et A= Matg(u). Alors u est trigonalisable
si et seulement si A est trigonalisable.

Théoréme 2.28 Soit u € L(E). Alors u est trigonalisable si et seulement si x,, est scindé dans
K[X] (i.e. xu se décompose en un produit de polynémes du premier degré).

PREUVE:
— (=) Si u est trigonalisable alors il existe une base B telle que :

all PEEY PR aln
Matgs(u) = | °
0 -~ 0 am

n
Notant 7" = Matp(u), on en déduit immédiatement que x,(z) = det(T'—z1,) = H(aii—x)
ce qui signifie que Yy, est scindé. =
— («=) On suppose que X, est scindé et on veut montrer que u est trigonalisable.
Nous allons raisonner par récurrence sur n = dim(E). Si n = 1 'affirmation est immédiate.
En supposant que pour n > 2 laffirmation est vraie quand dim(E) = n — 1, montrons
qu’elle est encore vraie quand dim(F) = n.
Donc soit E un K-espace vectoriel de dimension n et soit u € L(E) tel que x, soit
scindé. Cela entraine que Sp(u) # 0. Soit A € Sp(u) et soit e; un vecteur propre associé.
Complétons e; par des vecteurs eg, - -+ , e, pour que B = (e1,--- ,e,) soit une base de E.
Alors :
A Myy e e e Min
0

Matg(u) = M =
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Donc xu(xz) = (A — x)det(My; — zl,—1). D’autre part on a E = Ke; & F ou F =
Vect(ea, -+, ep). Soit g 'endomorphisme de E défini par :

00 -+ -+ - 0
0
Matg(g) =
(9) My
0
Remarquons que pour tout ¢ € {2,--- ,n} :

u(e;) = maer + g(ei)
Ainsi pour tout v € F il existe a € K tel que :
u(v) = aey + g(v)
D’autre part on a évidemment g(F') C F. Donc g, € L(F) et Maty, ... ¢,}(9],) = M.
Or xu(z) = (A —x)det(My — xIp—1) = (A — 2)xar (z). Comme x,, est scindé, il s’ensuit

que xar est scindé et on peut appliquer I'hypothese de récurrence. Il existe une base
(fa,-+, fn) de F telle que :

Qg2 Qi3 - Qo
0 as3 Q3

Mat{fzw-,fn}@\z«*) = ) )
0 - 0 amm

Comme E =Ke; & F, B = {ex, fa, -+ , fn} est une base de E. Pour tout j € {2,--- ,n}
il existe aq; € K tel que :

i
u(f;) = arjer + 9(f;) = ajer + > cijfi

1=2

Il s’ensuit que Matgp (u) est triangulaire supérieure.
On donne une autre preuve de I'implication x, scindé = u trigonalisable.

Définition 2.29 (Espace vectoriel quotient, ensemble) Soit E un K-espace vectoriel et F' C
E un sous-espace vectoriel. Soit u € E.
— La classe de u modulo F', notée w, est le sous-ensemble u + F des vecteurs de E de la
formeu+w avecw € F :u=u+F ={u+w,w € F}.
— L’ensemble quotient E/F est l’ensemble des u, lorsque u parcourt E.
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On aura donc compris que les éléments de E//F sont par définition des sous-ensembles de E. Le
fait que des éléments soient des ensembles est une des raisons qui font que la notion d’espace
vectoriel quotient est difficile & appréhender !

Exercice de cours 2.16 Pour u,v € E, montrer en utilisant le premier point, que & = v si et
seulement siu —v € F.

Exemple 2.30 Soit E = R? et F = {(z,y) : y = 2}. On a (1,0) = (0,—1) = {(1 +t,t),t €

R} mais (1,0) # (0,1). Graphiquement, les éléments de E/F sont les paralléles a la droite F
d’équation y = x.

Définition 2.31 (Espace vectoriel quotient, structure d’espace vectoriel) Soit E un K-
espace vectoriel et F' C E un sous-espace vectoriel. Il existe une unique structure d’espace vectoriel
sur l’ensemble quotient E/F telle que w: E — E/F soit une application linéaire.

PREUVE: En effet, on a nécessairement
ANT=Xetutv=u+7v (2.1)

si m est linéaire. Réciproquement, la formule (2.1) définit une structure d’espace vectoriel sur
E/F. En effet, on vérifie qu’elle ne dépend pas du choix de u et de v, et qu’elle définit donc de
maniére univoque A\ -« et a +  pour A € K et a, 8 € E/F. Pour cela, il faut montrer que si
W =aet? =, alors M/ = Auet v/ + v/ =u+ v. Or, on a, par 'exercice précédent, 'existence
de w,t € F tels que v/ = u+w et v/ = v +t. Ceci donne M/ = A\(u + w) = A\u+ A\w = Au car
Aw € F. De méme, v/ +v' =u+v4+w+t=u+vcarw+teF.

On vérifie alors de maniére assez automatique que tous les axiomes des espaces vectoriels
sont vérifiés avec ces deux lois. 0

Lemme 2.32 (Espace vectoriel quotient, base) Soit E un K-espace vectoriel et F C E un
sous-espace vectoriel de dimension d. Soit B = (e1, - ,e,) une base de E avec (e1,--- ,eq)
une base de F. Alors B = (egi1, -+ ,€n) est une base de E/F. En particulier, dim(E/F) =
dim(F) — dim(F).

Inversement, soit (e1,--- ,e,) une famille de vecteurs de E ayant les propriétés suivantes :
— (e1,-+- ,eq) est une base de F.
— (€41, ,€n) est une base de E/F.

Alors (e1,-++ ,ey) est une base de E.

PREUVE: Soit a € E/F et soit u € F tel que © = «. Alors il existe des scalaires \; tels que
U= Zi21 Aie;. Comme €; = 0sii < d, on en déduit que u = Zz‘zd—s—l Ai€;. Ainsi o = Zizd—s—l i€
Donc (€411, - ,€n) est une famille génératrice de E/F.

Par ailleurs, si on a une relation Zi2d+1 Aie; = 0, alors on en déduit que Zi2d+1 Ae; € F
par définition de E/F, donc il existe A1,---,Aq tels que D .54 Aie; = —ngd Ajej. Alors
> i>1 Aiei = 0, et donc tous les \; sont nuls, puisque B est une famille libre.

Pour la partie réciproque, il suffit de montrer que (ey,--- ,e,) est une famille libre. Or, si
> Aie; est une combinaison linéaire nulle, en appliquant 7 on en déduit que ) ;. ;€ = 0. Par le
deuxiéme point, \; = 0 si ¢ > d. Mais on a alors ) ., Aie; = 0, ce qui donne \; = 0 pour i < d
par le premier point. B =
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Proposition 2.33 (Passage au quotient) Soit f : E — G une application linéaire et F C E

un sous-espace vectoriel. On peut former un diagramme commutatif g _ S G st et seulement

l 7
s

iy s

s f

E/F
si f(F) = {0}, soit F C ker(f). Dans ce cas, il existe une unique application f : E/F — G telle
que ce diagramme commute.

La proposition “on peut former un diagramme commutatif ...” signifie en des termes plus habituels
“il existe f: E/F — G telle que f = fon”
PREUVE: Supposons qu’on peut définir f. Soit alors v € F, on a d’aprés I'exercice 2.16 7 = 0.

On en déduit que f(v) = f(m(v)) = f(0) = 0.

Réciproquement, si f(F) = {0}, alors la formule f(a) = f(v) si ¥ = « définit bien une
application f : E/F — G (ie, f(a) ne dépend pas du choix de v tel que ¥ = «), et c’est la seule
qui fait commuter le diagramme. 0

On revient & la preuve du théoréme. Soit donc v : £ — E telle que Y, est scindé. Soit A € K
tel que xu(A) = 0. Alors A est une valeur propre de u, soit donc v € E tel que u(v) = Av. On
définit F' = K - v et on forme le diagramme p__ “_ g

Sk
u
E/F
Comme u(v) = Av, on a u(F) C F et donc /(F) = 0. D’apreés le Proposition 2.33, on obtient un

diagramme p__ v _p JF

7
a —
7 d uw
E/F
En mettant ensemble les deux diagrammes précédent, on obtient
E—" -F
LN
u

On a alors le lemme suivant, qui relie la matrice de @ a celle de u :

Lemme 2.34 Soit B = (e1,--- ,e,) une base de E avec ey = v. Soit B = (€3, ,€,) une
base de E/F, par le Lemme 2.32. Alors, Matg(T) est la matrice extraite de Matg(u) obtenue en
supprimant la premiére ligne et la premiére colonne.

PREUVE: Par le diagramme commutatif définissant @, si u(e;) = ), a;je;, alors u(ej) =
> i>o @i j€. Ceci montre que la matrice de @ est la matrice extraite annoncée. =



2.2. TRIGONALISATION ET THEOREME DE CAYLEY-HAMILTON 41

On termine alors la preuve du théoréme comme suit : d’aprés le Lemme 2.34, la matrice de u
dans la base B s’écrit

>\ a12 .. ... o oee aln
0

Mats(u) = | | . (2.2)
. a B u

0

En développant le déterminant de Matg(u) — xI,, par rapport a la premiére colonne, on en
déduit que x,(z) = (A — z)xw(z). Comme X, est scindé, si on note y; ses racines comptées avec
multiplicités, de sorte que xu(z) = [[;,(ti — x), on a [[;(1s — A) = 0. On en déduit I'existence
d’un entier i tel que p; = A. Alors, xz(z) = [];,;(#; — 2). En particulier, x7 est scindé.

On a dim(E/F) = dim(E) — 1; en argumentant par récurrence sur dim(£), on peut donc
supposer qu'’il existe une base B = (%, <o ,el) de E/F telle que Mat (%) soit triangulaire
supérieure. Si on pose B = (e, e}, -+ ,el), le Lemme 2.32 montre que B’ est une base de E. De
plus, d’aprés la relation (2.2) appliquée avec B, la matrice de u dans la base B’ est triangulaire

supérieure.

Exercice de cours 2.17 Soit A une matrice carrée d’ordre 2 o coefficients réels et soit x4 son
polyndome caractéristique. Soit A le discriminant de x A.

1. Si A <0, montrer que A est diagonalisable sur C mais pas sur R.

2. Si A = 0, montrer que A est trigonalisable sur R. Donner un exemple ot A n’est pas
diagonalisable sur R.

3. Si A >0, montrer que A est diagonalisable sur R.

Corollaire 2.35 Soit E un espace vectoriel sur C de dimension finie. Alors tout endomorphisme
de E est trigonalisable.

PREUVE: C’est une conséquence du fait que C est algébriquement clos (i.e. tout polynéme a
coefficients dans C est scindé). 0O

Remarque 2.36 Si un endomorphisme u est trigonalisable alors sa matrice dans une base ap-
propriée est triangulaire supérieure et sur la diagonale principale figurent les valeurs propres de
u, chacune d’elle y figurant autant de fois que son ordre de multiplicité dans x..

n n
Corollaire 2.37 Si x,, est scindé, c’est-a-dire si xu(x) = 1_[(/\Z — ) alors tr(u) = Z)‘i et
i=1

=1
n

det(u) = H i

i=1
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2.2.2 Polyndémes d’endomorphismes

Soit w un endomorphisme de E. On rappelle que pour tout i € N*, u’ est défini par récurrence
de la fagon suivante :

1. v =Idg.

2. Pour tout entier i > 1, v’ = uou’1.
On a alors les propriétés suivantes, pour tout (p,q) € N on a :

1. uPou? = uPt4 =yl ouP.

2. (uP)? = uPl = (u?)P
Définition 2.38 Soit u un endomorphisme de E. On appelle polynome de ’endomorphisme u
tout endomorphisme de la forme :

k
P(u) = Z au’
=0
k
ot P(X) = ZaiXi est un polynome de K[X].
=0
k
Remarque 2.39 De méme si A est une matrice de M, (K) et P(X) = Z%‘Xi un polynome
1=0

de K[X], on pose :
k
P(A) =) a; A’
=0

Exercice de cours 2.18 Calculer P(A), P(B) et P(C) pour P(X) = X? 4+ X + 1, lorsque
A, B,C sont les matrices des exercices 2.1 et 2.6.

Proposition 2.40 Soient u et v deux endomorphismes de E, P et @ deux polynéomes de K[X]
et (\, ) € K2. Alors :

1. (AP + pQ)(u) = AP(u) + pQ(u).
2. (PQ)(u) = P(u) 0 Q(u) = Q(u) o P(u) = (QP)(u).
3. Si B est une base de E, alors Matg(P(u)) = P(Matg(u)).

Remarque 2.41 Cette proposition ne dit rien d’autre que pour tout u € L(E) application :

o, : KX] — L(E)
P(X) — P(u)

est un morphisme de K-algébres. Plus précisément cela signifie que :
— @, est une application linéaire du K-espace vectoriel K[X] dans le K-espace vectoriel
L(E).
— VY(P,Q) € KIX]?, ®,(PQ) = ®,(P) o ®,(Q).
— @, (1) = u’ = Idg.
D’autre part, le point 2. de la proposition dit que si P(X) = (X —a1)* -+ (X — a,)*" alors :

P(u) = (u—a1ldg)* oo (u—a,ldg)™
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2.2.3 Théoréme de Cayley-Hamilton
Théoréme 2.42 (Cayley-Hamilton) Soit u un endomorphisme de E, alors :

Xu(u) =0

Commencgons par traiter un exemple : soit M la matrice ayant tous les coefficients nuls sauf sur
la sur-diagonale, ot ils sont égaux a1 : M = (a;;) avec a;;41 = 1 et a;; = 0 pour j # i+ 1. On
a alors xp(z) = (—z)". Montrons que M"™ = 0. Pour cela, soit V; C K" le sous-espace vectoriel
engendré par eq, - - , e;, avec la convention Vo = {0}. Ona M -e; = ¢;—1 donc M -V; C V;_1. On
en déduit que

M" Vo C MV g CM™ 2 Vg Cooe

de telle sorte que finalement M™ -V, = {0} et donc M™ = 0.

PREUVE: Comme M, (R) C M,(C), il suffit de montrer le théoréme dans le cas ou K = C.

Ainsi u est trigonalisable. Donc soit B = {e1, -+ ,e,} une base dans laquelle ' = Matg(u) est
triangulaire supérieure. Notons A1, - -+ , Ay, les valeurs propres de u telles que :
A1
T=10
An
Posons Vp = {0} et pour tout k € {1,--- ,n} soit V} := Vect(ey,- - ,e). Alors on a le lemme
suivant :

Lemme 2.43 Pour tout k € {1,--- ,n}, (u— M\ ldg ) (Vi) C V1.

PREUVE: Soit k € {1,--- ,n} et j € {1,--- ,k}. Comme T est triangulaire supérieure il existe
des scalaires o, -+, 55 tels que :

J
(u—Xeldg )(ej) = Zaijei — Ake;j
i=1

Sij <k, alors (u—Agldg )(ej) € Vi—1. Si j =k, comme agi, = A, on a aussi (u— A\ Idg )(ej) €
Vi—1.

Poursuivons maintenant la preuve du théoréme. Soit maintenant x € £ = V,,. Alors d’apreés
le lemme précédent :

(u -\ Idg )(:E) eV, (u — A\o1ldg )O (u — A\ Idg )(%) €EVp_o, -,
(u—XIdg )o---o(u—AJdg )(z) € Vh

Comme V; n’est rien d’autre que le sous-espace propre associé & A1, on a :
(u—)\lldE)o-uo(u—)\nIdE )({L‘) =0

et comme xy(u)(x) = (=1)"(u — MIdg ) o--- o (u— A Idg )(x), il s’ensuit que x,(u) =0.
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Exemple 2.44 On considére deux exemples pour illustrer ce théoréme et la théorie du polyndome

02 02
calcul facilement leurs polynomes caractéristiques : xu(X) = xv(X) = (X — 2)2. On vérifie

le théoreme de Cayley-Hamilton : U — 215 = <8 (1)> et V — 21, = (8 8) On a donc bien

. . 21 20 . . . .
minimal. Soit U = ( > etV = ( > Come ces matrices sont triangulaires supérieures, on

(U —20)2=0 et (V—2I)%=0.

Exercice de cours 2.19 Vérifier le théoréme de Cayley-Hamilton pour les matrices A, B,C
ci-dessus.

Exercice de cours 2.20 Soit M la matrice

Montrer que xp(X) = (X — 1)3(X — 2)2. Vérifier que xp (M) = 0 (pour cela garder la forme
factorisée de xnr!).

2.3 Polyndme minimal

2.3.1 Théoréme de décomposition des noyaux

Théoréme 2.45 Soient uw € L(E), Py,--- , Py des polynomes de K[ X| premiers entre eur deux

k
a deuz et P = HPi‘ Alors :
=1

k
Ker(P(u)) = @ Ker(P;(u))
i=1
PREUVE: Sik =1, le résultat est évident.

Sik =2, alors P = PP, et P; et P, sont premiers entre eux. D’aprés le théoréme de Bezout,
il existe deux polyndémes U; et Us tels que :

1=U,PL+UsPy

Il s’ensuit que :
Idg = Ui(u) o Pi(u) + Uz (u) o Py(u)

Soit = € Ker(P;(u)) N Ker(Pz(u)). Alors la relation précédente entraine que :
z = Ur(u)(Pr(u)(2)) + Ua(u)(P2(u)(z)) = 0

Donc Ker(P;(u)) et Ker(P(u)) sont en somme directe.
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Montrons maintenant que Ker(P(u)) C Ker(P;(u)) + Ker(Pa(u)) :
Soit = € Ker(P(u)), alors :

& = U1(w)(Py(u)(2)) + Un(u) (Pa(u)(2))

Or :
Py(u) (U1 (u)(Pr(u)(2))) = Ur(u)(P(u)(z)) = 0

Donc Uy (u)(Py(u)(z)) € Ker(Py(u)). De méme Us(u)(P(u)(z)) € Ker(Pr(u)). Finalement z €
Ker(P;(u)) + Ker(Pa(u)).

Montrons que Ker(P;(u)) + Ker(P2(u)) C Ker(P(u)) :

Soit z € Ker(P;(u)), alors P(u)(x) = Py(u)(Py(u)(z)) = 0 donc & € Ker(P(u)) et Ker(Py(u)) C
Kzr(P(u)). De méme Ker(P>(u)) C Ker(P(u)). Donc Ker(P;(u)) + Ker(P(u)) C Ker(P(u)). On
a donc montré que :

Ker(P(u)) = Ker(P;(u)) & Ker(Pa(u))

Soit k£ > 3 et supposons le théoréme démontré au rang & — 1. Montrons que le résultat est
vrai au rang k. Soient Pp,---, Py des polynémes de K[X]| premiers entre eux deux a deux et

k
P = HPZ-. Alors les polynémes P; et P, --- P, sont premiers entre eux et d’aprés ce qui a été
i=1
montré précédemment on a :

k
Ker(P(u)) = Ker(Py(u)) ® Ker(Py - - - Py)(u) = @ Ker(P;(u))
i=1

O

Exercice de cours 2.21 Pour la matrice M ci-dessus, déterminer les sous-espaces vectoriels
Ker((M — I5)3) et Ker((M — 2I5)%). Vérifier qu’ils sont supplémentaires dans R5. Retrouver ce
résultat en utilisant le théoréme de décomposition des noyauz.

2.3.2 Polynémes annulateurs, polynéme minimal

Commengons par quelques rappels.

Définition 2.46 Soit (A,+, x) un anneau. Alors on dit qu’un sous-ensemble T de A est un
idéal si :

1. (Z,4) est un sous-groupe de (A,+).

2.Va€eA , VeeTl, ar L.

Un idéal est dit principal si T est engendré par un seul élément. Autrement dit T est principal
s’il existe a € T tel que :

I={ya;ycA}

Un anneau principal est un anneau dont tous les idéaux sont principaux.
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L’anneau des polynomes K[X] est un anneau principal. C’est une conséquence de I’algorithme
d’Euclide. En effet soit Z un idéal de K[X]. Alors Z est non vide. Si Z = {0}, le résultat est
évident.

Supposons Z # {0}. Soit Py un polynéme non nul de Z de degré minimal. Soit P € Z. En
effectuant la division euclidienne de P par Py, il existe des polynomes () et R tels que :

P(X) = Q(X)Po(X) + R(X)

ou deg(R) < deg(Fp). Comme (Z,+) est un idéal de K[X], P(X) — Q(X)FPy(X) € Z. Donc
R(X) € Z. Mais comme Py un polynéme non nul de Z de degré minimal, il s’ensuit que R(X) =0
et :

I={QX)Ph(X); Q(X) € K[X]}

Donc K[X] est un anneau principal et tout idéal Z de K[X] est engendré par tout polyndéme non
nul de Z de degré minimal. De plus il n’est pas difficile de voir qu’il existe un unique polynome
unitaire (i.e. dont le terme de plus haut degré vaut 1) de Z de degré minimal qui engendre Z.
Résumons tout ceci dans la proposition qui suit :

Proposition 2.47 L’anneau K[X] des polynomes est principal et tout idéal T tel que T # {0}
est engendré par un unique polyndme unitaire de I de degré minimal.

Proposition et définition 2.48 Soit u € L(E). Considérons le sous-ensemble de K[X]| sui-
vant :

Z(u) = {P € K[X] ; P(u) =0}

Alors I(u) est un idéal de K[ X] appelé idéal annulateur de u.
Tout polynome P de Z(u) est appelé polyndme annulateur de u.

PREUVE: Le polynome nul appartient a Z(u), donc Z(u) # 0. Soient (P, Q) € (Z(u))?. Alors :
(P = Q)(u) = P(u) = Q(u) = 0
Donc Z(u) est un sous-groupe de (K[X], +). D’autre part pour tout A € K[X] :

(AP)(u) = A(u) o P(u) =0

Donc AP € Z(u) et Z(u) est un idéal de K[X]. 0
Exemple 2.49 Soit W = <8 (1)> Alors W™ = 0 si n > 2. Done, pour P(X) = ag + a1 X +

asX?+---, ona P(W) = aply + a1W. L’annulateur de W est donc ’ensemble des polynomes
P(X)=ao+a1X +asX?+--- aveca=0=a; =0. On vérifiera que c’est un idéal de K[X].

On va maintenant étudier de fagon similaire I'idéal annulateur des matrices U et V' de ’Exemple
2.44. Pour cela, on établit un lemme préliminaire :
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Lemme 2.50 Soit P € K[X] de degré n et c € K. Il existe d’uniques coefficients ag,- -+ ,a, € K
tels que
PX)=an(X —)" 4+ an 1 (X —)" 14+ Fa1(X —¢) +ag (2.3)

PREUVE: En effet, I’équation 2.3 est équivalente & I’équation
P(X +¢)=ap X"+ a1 X" '+ + a1 X + a.
Les coefficients a; sont donc les coefficients du polynéme P(X + ¢). 0

Exemple 2.51 Un polynéme P est dans [’idéal annulateur de U, resp. V', si et seulement si 2
est une racine double, resp. simple de P.

PREUVE: Soit P € K[X]; écrivons le a 'aide du Lemme 2.50 sous la forme
PX)=an(X —=2)" + an—1(X —=2)" "+ +a2(X —2)* + a1 (X — 2) + aq.
On a alors

P(U) = an(U - 2]2)” + an_1(U - 2]2)”71 + -+ CLQ(U - 2]2)2 + CL1(U - 2[2) + agls.

Comme U — 21, = <8 (1]> est de carré nul, on a donc P(U) = a1(U — 2I3) + aplz. Ainsi, P(U)

est nul si et seulement si ag = a; = 0, ce qui équivaut a dire que 2 est une racine double de P.
Pour V, le raisonnement est similaire, a ceci prés que V' — 21, = 0. On a donc P(V) = agls.
Ainsi, P(V') est nul si et seulement si ag = 0, ce qui équivaut a dire que 2 est une racine de P.

Proposition et définition 2.52 Soit u € L(E). Alors Z(u) # {0} et il existe un unique poly-
nome unitaire p,, de Z(u) de degré minimal qui engendre Z(u).

Autrement dit u,, est lunique polynome annulateur de w, unitaire de degré minimal qui divise
tous les autres polynémes annulateurs de u.

Ly S’appelle le polyné6me minimal de u.

PREUVE: D’aprés le théoréme de Cayley-Hamilton, x,(u) = 0. Comme degx, = n, Xy est
un polynéme non nul et Z(u) # {0}. D’aprés la proposition 2.47 il existe un unique polynéme
unitaire u,, de Z(u) de degré minimal qui engendre Z(u). Cela revient a dire que :
I(u) = {P(X)pu(X) ; P(X) € K[X]}
U

Exercice de cours 2.22 Soit N € M(R) une matrice telle que N?> = I. Montrer qu’on a
trois possibilités pour py : soit pn(X) = X — 1, soit un(X) = X + 1, soit uy(X) = X2 — 1.

Remarque 2.53 Le degré m du polynéme minimal vérifie toujours m > 1.
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Exemple 2.54 L’exemple 2.49 montre que l'idéal annulateur de W est I’ensemble des multiples
de X2. Ainsi, uw (X) = X2. De fagon similaire, I’exemple 2.51 montre que l'idéal annulateur de
U resp. V est l'ensemble des multiples de (X — 2)? resp. X — 2. On a donc uy(X) = (X — 2)?
et py(X) =X —2.

Exercice de cours 2.23 Soit A la matrice de l’exercice 2.1 et soit pa son polynéme minimal.
1. Montrer que pa divise (X +1)(X —1).
Il y a donc trois cas de figure possible : py est un des trois polynomes (X +1),(X —1) et
(X +1)(X — 1).
2. Les polynomes X — 1 et X + 1 annulent-ils A ?
3. En déduire que pa(X) = (X +1)(X —1).

On remarque que 'unique racine de yw et uw est 0, et que I'unique racine de xy, xv, pu et py
est 2.

Proposition 2.55 Le polynéme minimal et le polynéme caractéristique ont exactement les mémes
racines.

PREUVE: Soit A une racine de y,. Alors A est une valeur propre de wu. Soit x un vecteur
propre de u associé & \. Il est facile de voir que pour tout entier ¢ > 0 : u'(z) = A'x. Donc si

k
pu(X) = ZaiXi, alors :
=0

k

k
0= py(u)(z) = Zaiui(:c) = <Z ai)\i> x = py(N)x
=0

=0

Comme z est non nul car x est un vecteur propre, p,(A) = 0 et A est une racine de p,.
Réciproquement, comme g, divise x,, les racines de p,, sont des racines de xu. 0

Exercice de cours 2.24 Pour les matrices B et C' de ’exercice 2.6, montrer qu’on a
up(X) = (X —2)(X = 1)? ; po(X) = (X —2)(X — 1),
Pour cela, on pourra utiliser la relation ug|xp, et la proposition précédante.
Exercice de cours 2.25 Soit M la matrice de l'exercice 2.20. Montrer que
par(X) = xmr(X) = (X = 1)°(X - 2)%

Exercice de cours 2.26 Soit N € M3(R) une matrice telle que N? = I. Montrer que les
racines de xn appartiennent a {—1,1}.

Observons que puy(X) = (X —2)2, uy(X) = X —2 et uy (X) = X2, Par ailleurs, V est diagonale,
U et W sont triangulaires supérieures. Les matrices U et W ne sont pas diagonalisables car leur
unique espace propre est de dimension 1 (en effet U — 215 et W sont de rang 1). Ceci illustre le
critére de diagonalisabilité suivant :
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Théoréme 2.56 Soit uw € L(F). Alors u est diagonalisable si et seulement si son polynome
minimal est scindé et si toutes ses racines sont simples.

PREUVE:
— (=) Supposons que u est diagonalisable. Soient Ay, -- -, A, les valeurs propres de u (comp-
tées sans multiplicité - autrement dit Aq, - - -, A, sont distincts). Considérons le polynéme :

PX) =X =X)-- (X = A)

,
Comme u est diagonalisable, ' = @ E,(u). Donc soit x € E, alors il existe (z1,--- ,2,) €
i=1
By, (u) x -+ x Ey,_(u) tel que :
r=x1+ -+

Or:
P(u)(z;) = | [ (u—Xldg) | ((u— \ldg)(z:)) =0
1<j<r
J#i
Donc P(u)(x) = 0 pour tout x € E' et P(u) = 0. Donc P est un polynéme annulateur de
u et p, divise P. Comme les racines de p, sont exactement les valeurs propres Aq,- -+, Ap,

il s’ensuit que u, = P et u, est scindé et n’a que des racines simples.
— («=) Supposons que i, est scindé et n’a que des racines simples. Alors :

pu(X) = (X = Ay) - (X = Ar)

et A1, -+, Ar sont les valeurs propres de u. D’aprés le théoréme 2.45 :

T T

E = Ker(u(v)) = @ Ker(u — A\Idg) = @ Ex, (u)
i=1 i=1

Donc E est la somme directe des sous-espaces propres de u ce qui signifie que u est

diagonalisable.

O

Corollaire 2.57 Soit u € L(E). Alors u est diagonalisable si et seulement si il existe un poly-
nome annulateur de u qui est scindé et qui n’admet que des racines simples.

PREUVE:

— (=) On suppose que u est diagonalisable. Alors d’aprés le théoréme précédent p, est
scindé et n’a que des racines simples. De plus c¢’est un polynéme annulateur.

— (<) Réciproquement supposons qu'’il existe un polynéme annulateur P de u qui est scindé
et qui n’admet que des racines simples. Comme g, divise P, il s’ensuit que p,, est scindé
et n’a que des racines simples ce qui implique d’aprés le théoréme précédent que u est
diagonalisable.

O

Exercice de cours 2.27 Soit N € Ms(R) une matrice telle que N*> = I. Montrer que N est

diagonalisable. Quelles peuvent étre les valeurs propres de N 2 Montrer que la trace de N vaut
—2,0 ou 2.
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2.4 Projecteurs

Soient F' et G deux sous-espaces vectoriels supplémentaires dans £ : E = F & G. Pour tout
x de E il existe un unique couple (p(z), ¢(z)) € F' x G tel que x = p(x) + q(x).

Proposition 2.58 Les applications p et q sont des endomorphismes de E. p s’appelle le pro-
jecteur sur F parallélement a G et g s’appelle le projecteur sur G parallélement a F'.

Remarque 2.59 On ap+q = ldg.

Proposition 2.60

1. Sotent F' et G deux sous-espaces vectoriels de E/ supplémentaires dans E et p le projecteur
sur F parallelement a G. Alors on a : pop =p, Im(p) = F et Ker(p) = G.

De plus si q est le projecteur sur G parallélement a F, alors poq=qop=0.

2. Réciproquement, soit p € L(E) tel que pop = p. Alors :
E = Im(p) & Ker(p)
et p est le projecteur sur Im(p) parallélement a Ker(p).

PREUVE: Prouvons d’abord le point 1). Soit « € E. Alors p(z) = p(z) + 0 et (p(x),0) € F x G.
Donc par unicité de la décomposition p(p(x)) = p(z) et pop = p.

Déterminons Im(p). Comme pour tout = € E, p(z) € F, il est évident que Im(p) C F.
D’autre part pour tout  dans F', ona x = x + 0 et (2,0) € F x G. Donc = p(z) € Im(p).
Ainsi Im(p) = F.

Déterminons Ker(p). Pour tout z de G, z = 0+ x et (0,2) € F x G, donc p(z) = 0, d’ou
G C Ker(p). Réciproquement soit x € G, alors x = p(z) + g(x) = 0+ x et par unicité de la
décomposition p(x) = 0. Donc Ker(p) C G. Ainsi Ker(p) = G.

Montrons maintenant le point 2). Soit x € Ker(p) N Im(p). Alors p(z) = 0 et il existe y € E
tel que p(y) = z. D’ou :

0=p(x) =p(p(y)) = (pop)(y) =py) ==

Ceci montre que Im(p) N Ker(p) = {0} et donc Im(p) et Ker(p) sont en somme directe. Soit
xz € E. Alors x = p(z) + (x — p(x)). Or p(z — p(x)) = p(z) — (pop)(z) = 0. Donc x — p(z) €
Ker(p). Ceci montre que E = Im(p) + Ker(p). Nous avons donc montré que Im(p) et Ker(p) sont
supplémentaires dans F.

Puisque pour tout « € E, z = p(x) + (x — p(z)) avec p(x) € Im(p) et x — p(z) € Ker(p), p
est le projecteur sur Im(p) parallélement a Ker(p). 0O

Exercice de cours 2.28 Soit, dans R?, les sous-espaces vectoriels F' et G engendrés respec-
tivement par (1,1) et (1,—1). Ecrire les matrices P resp. Q des projections sur F (resp. G)
parallelement a G (resp. F). Vérifier que P+ Q = I, P> = P,Q? = Q.

Remarque 2.61 L’application linéaire g = Idg — p est le projecteur sur Ker(p) parallélement a
Im(p), Ker(q) = Im(p) et Im(q) = Ker(p).
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Proposition et définition 2.62 Soient Fi,..., Fy des sous-espaces vectoriels de E tels que

k
E = @FZ-. Alors pour tout x € E, il existe un unique k-uplet (p1(x),...,pr(x)) € F1 x ... x F}
i=1

k
tel que : x = zpl(fn)
i=1

Les applications p; sont des endomorphismes et (p;)1<i<k s appelle famille de projecteurs

k
de E associée a la décomposition E = @ F;.
i=1
Proposition 2.63
k
1. Soit (pi)i<i<k une famille de projecteurs de E associée a la décomposition E = @Fz
i=1

Alors : pour tout (i,5) € {1,...,k}? :
k
i=1

— (ii) piopi = pi-
— (i) piop; =0 sii#j.
k
De plus Im(p;) = F; et Ker(p;) = @Fj pour tout i € {1,...,k}.
j=1
J#i
2. Réciproquement soit (p;)1<i<k une famille d’endomorphismes de E vérifiant les propriétés
k
(i), (ii) et (iii). Alors E = @ Im(p;) et (pi)i<i<k est la famille de projecteurs associés

i=1
cette décomposition.

,

Remarque 2.64 Soit & = @ F; et (pi)i<i<r la famille de projecteurs associée a (F;)1<i<r. Pour
i=1

v un endomorphisme tel que pour tout i € {1,--- ,r}, F; est stable par v, on a vop; =p;owv.

PREUVE: Pour montrer 1’égalité des applications linéaires v o p; et p; o v, il suffit de montrer
que pour z € Fj avec 1 < j <7, onavop(x)=p;ov(x). Or,sij#1i, onap(V;) ={0}, donc
vopi(x) =p;ov(x)=0.Sij=1i,onawvop(x)=p;ov(x)=uv(x). 0

Proposition 2.65 Soit v € L(E). Alors u est diagonalisable si et seulement si il existe des
scalaires A1, -+ , A et une famille de sous-espaces vectoriels (F;)1<i<r tels que :

E= éFz et u= i)\ipi
i=1 i=1

0w (pi)i<i<r est la famille de projecteurs associée a (F;)
et F; = Ey, (u) pour tout i € {1,--- ,r}.

1<i<r- Dans ce cas Sp(u) = {1, , A}

X
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PREUVE: Supposons que u est diagonalisable. Par le théoréme 2.19, E est somme directe de ses
SOuUs-espaces propres :
E=EPE ().
i

Si on note F; = E),(u) et (p;) la famille de projecteurs associée a cette décomposisition, il reste
a montrer que u = Y . \;p;. Pour montrer que pour tout = de E, u(x) = >, \ipi(x), on peut,
par linéarité, supposer qu’il existe i tel que « € Fj. Alors, on a u(z) = Nz et 3, Ajp;(z) = Ai.
Donc I’égalité est établie.

Supposons maintenant qu’il existe (F;) et (A;) tels que

{ E=@,F
P=>;\iDi

Alors, on vérifie comme ci-dessus que pour z € Fj, on a Zj Ajpj(x) = Nz, de sorte que F; C
E),(u). On raisonne sur les dimensions pour en déduire que F; = E),(u) : I'inclusion déja établie
donne dim(F;) < dim(E),(u)). D’ou dim E' = )" dim(F;) < ) dim(E),(u)) < dim E, de sorte
que toutes ces inégalités sont des égalités, et donc F; = E),(u). On en déduit E = @ E)y, (u), et
donc que u est diagonalisable. 0O

Exercice de cours 2.29 Soit F C R3 le sous-espace vectoriel engendré par (1,—2,3), et soit G
le sous-espace vectoriel engendré par (1,—1,0) et (0,0,1). Calculer la matrice P de la projection
sur F paralléelement o G et la matrice Q) de la projection sur G parallélement o F. Calculer
2P + Q et comparer le résultat a la matrice C' de l'exercice 2.6. Pouvez vous expliquer ce que
vous constatez ¢

Remarque 2.66r

,
— Si F = @FZ et u = Z)‘ipi ot (pi)i<i<r est la famille de projecteurs associée a
i=1 i=1

(Fi)i<i<r, alors pour tout entier k >0 :

.
uF =" Aps
i=1

— Plus généralement si (u1,--- ,u,) € L(E)" et si pour tout i € {1,--- ,r} les sous-espaces
T

F; sont stables par u;, alors l’endomorphisme u = Z w; op; vérifie pour tout entierk > 0 :
=1

T
=3t op,
=1

2.5 Sous-espaces caractéristiques et décomposition de Dunford-
Jordan

2.5.1 Indice d’'un endomorphisme et endomorphismes nilpotents

Proposition 2.67 Soit uw € L(E). Alors :
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1. Pour tout entier k > 0, Ker(u*) C Ker(uF*1).

2. La suite (Ker(uF))ren est stationnaire. Autrement dit :
3j>0; Vk>j, Ker(u) = Ker(u®)
3. Si j est un entier tel que Ker(uw/) = Ker(uw/*1) alors :
Vk>j, Ker(u) = Ker(u¥)
4. Soit ig le plus petit entier tel que Ker(u') = Ker(u®t1). Alors ip < dim(E).

PREUVE:
1. Soit k € N et soit 2 € Ker(u"), alors :

W (z) = u(uF(z)) = u(0) =0

Donc x € Ker(u**1) et Ker(u*) c Ker(uF*1).

2. Considérons la suite (dim(Ker(u")))ren. Comme Ker(u*) € Ker(u**1) C E, dim(Ker(u*)) <
dim(Ker(u**1)) < dim(E) = n donc (dim(Ker(u*)))ren est une suite croissante d’entiers
majorée. Donc & partir d’un certain rang, la suite (dim(Ker(u*)))ren est stationnaire.
Donc :

3j>0; Vk>j, dim(Ker(v)) = dim(Ker(u*))

Comme Ker(u?) C Ker(uF) pour tout k > j, il s’ensuit que Ker(u’) = Ker(u*) pour tout
=

3. Supposons que Ker(u/) = Ker(u/*1). Montrons que pour tout k > 5, Ker(u¥) = Ker(uF*1).
Soit z € Ker(u**1), alors :

uf (@) = I (" (2) = 0
Donc u*77(x) € Ker(u/*!), mais comme Ker(u/) = Ker(uw/*1), u*~7(x) € Ker(u/) et :
(13 (2)) = 0 = ¥ (a)

Donc x € Ker(u) et Ker(u**!) C Ker(u¥). Mais d’aprés le 1. on a aussi Ker(u*) C
Ker(u**1). Finalement Ker(u*) = Ker(u**1).

4. Soit ig le plus petit entier tel que Ker(u®) = Ker(u*!). Considérons 1'application :

F : {0,---,i0} — {0,---,n}
k —  dim(Ker(u*))

D’aprés le point précédent, on a :
dim(Ker(u?)) < - -+ < dim(Ker(u™))

Donc F est injective et il s’ensuit que ig < n.
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O

Définition 2.68 Soit u € L(E). On appelle indice de u le plus petit entier ig tel que Ker(u®) =
Ker(u'oth).

Exercice de cours 2.30 Déterminer l'indice de B — I3 et celui de C' — I3.

Remarque 2.69
— Siig > 0, alors d’aprés la définition de ig et la proposition on a pour tout p > 1 :

{0} = Ker(uo) G- G Ker(uio) = Ker(uiOH) = ... = Ker(uio"rp)

— Soit p € N*. Alors Ker(uP) = {0} si et seulement si Ker(u) = {0}. En effet Ker(u) C
Ker(uP) donc ’égalité Ker(uP) = {0} implique Ker(u) = {0}. Réciproquement, si Ker(u) =
{0}, alors u est injective, et il en est de méme de uP pour tout p.

Le deuxiéme point résulte aussi de la Proposition 2.67 dans le cas particulier 79 = 0.

Définition 2.70 Soit v € L(E). On dit que v est un endomorphisme nilpotent s’il existe un
entier k tel que v* = 0.

Proposition 2.71 Soit v un endomorphisme nilpotent de E. Soit ng lindice de v. Alors ng est
le plus petit entier tel que v™ =0 et on a ng < dim(FE).

PREUVE: Soit m le plus petit entier tel que ™ = 0. Alors v™ 1 #£ 0 et :

Ker(v™ 1) ¢ Ker(v™) = F

m+1)

Il s’ensuit que Ker(v™) = Ker(v et m est l'indice de v. 0O

Exercice de cours 2.31 Donner un exemple d’endomorphisme nilpotent non nul.

Proposition 2.72 Soit v un endomorphisme nilpotent de E. Alors Sp(v) = {0}. De plus v est
diagonalisable si et seulement si v = 0.

PREUVE: Soit ng I'indice de v. Alors 1™ = 0 et ™0~ = 0. Soit P(X) = X™. Alors P est un
polynéme annulateur et comme le polynéme minimal de v divise P, il s’ensuit que p, (X) = X k
avec k < ny.

D’aprés le théoréeme 2.56, v est diagonalisable si et seulement si p, est scindé (ce qui est
le cas) et p, n’a que des racines simples. Or p, n’a que des racines simples si et seulement si
py(X) = X. Mais dans ce cas p,(v) =v = 0. 0O

Proposition 2.73 Soit d un endomorphisme diagonalisable de E. Alors d est nilpotent si et
seulement st d = 0.

PREUVE: Dans une base adaptée, la matrice D de d est diagonale : écrivons D = Diag(Ai, ..., \p).
Alors D¥ = Diag(\¥,--- , \E). Donc, il existe k tel que D* = 0 si et seulement si Vi, \; = 0, soit
D =0. O
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Exercice de cours 2.32 Soit v un endomorphisme nilpotent de E et soit ng son indice de
nilpotence.

1. Montrer que v annule un polyndme scindé.
2. Quelles sont les valeurs propres de v ?

3. Montrer qu’il existe une base de E dans laquelle la matrice de v est strictement triangulaire
supérieure (c’est-a-dire triangulaire supérieure avec des 0 sur la diagonale).
4. Montrer que v3™(E) =

5. Retrouver le résultat de la Proposition 2.71 selon lequel ng < dim(E).

2.5.2 Sous-espaces caractéristiques

Dans ce paragraphe u est un endomorphisme de E tel que x, soit scindé sur K. Soient

AL, -+, Ar les valeurs propres (distinctes) de u. Alors :
xu(X) = )" TX = 20", wa(X) = [T = 20)%
i=1 i=1

On note d’autre part :

Oy,

S(u) == Ker(u — \Idp)® et My, (u) == Ker(u — M\Idg)~
On a bien entendu 1 < 5; < o;.

Définition 2.74 Soit i € {1,---,r}. Le sous-espace vectoriel Cy,(u) s’appelle le sous-espace
caractéristique associé€ a la valeur propre A;.

Exercice de cours 2.33 Déterminer C1(A), M1(A),C_1(A), M_1(A). Déterminer aussi C1(B)
et M1 (B) .

Remarque 2.75
— D’aprés le paragraphe précédent, on a :

By, (u) C My, (u) C Cy,(u)
— My, (u) et Cy,(u) sont stables par u (i.e. uw(My,;(u)) C My, (u) et u(Cy,(u)) C Cy,(u)).
Proposition 2.76 Soiti € {1,--- ,r}. L’indice de u — N\ Idg est ;. En particulier on a :
My, (u) = C,(u)

PREUVE: Les polynomes des ensembles {(X — X)) ; 1 <i<r}et {(X —N)%; 1<i<r}
sont premiers deux a deux. Comme X, et p,, sont des polynémes annulateurs on a Ker(y,(u)) =
Ker(uy(u)) = E et d’aprés le théoréme 2.45 on a :

E=@ M, ) =P
=1 =1
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Donc :

dim(E Z dim(My, (u Z dim(Cly, (u

Donc
.

S (dim(Cy, (u) — dim(My, (u)) = 0
i=1
Comme dim(Cly, (u)) — dim(My, (u)) = 0, On a dim(My, (u)) = dim(Cy,(u)) et My, (u) = Cy,(u).
On en déduit donc que l'indice ig de v — \;Idg vérifie ig < 5;.
Supposons que ig < ;. Cela signifie alors que Ker(u — \Idg)%~1 = Ker(u — \Idg)?
Considérons alors le polynéme :

QO = | TT x =) [ (x = a)*!
1§;’§7‘
VE

Soit x € E. Comme E = @MAJ.(U), il existe (x1,---,2,) € My, (u) X --- x My, (u) tel que :
j=1

x=1z1+ -+ z,. Pour tout j € {1,--- 7} tel que j # i, on a (u — \;Idg)% (z;) = 0. De plus

comme Ker(u — )\iIdE)ﬁi*1 = Ker(u — )\Z'IdE)Bi = M), (u) on a (u — )\ildE)Bifl(xi) = 0. Donc

pour tout j € {1,--- ,r} Q(u)(xz;) =0et:

Qu)(z) =0
Ceci pour tout z € E. Donc @ est un polynéme annulateur de u. Mais deg(Q) < deg(u,,) ce qui
contredit la définition de u,. Donc ig = 3;. =

Proposition 2.77 Pour touti € {1,---,r} on a :
dim(Cy, () = m()

PREUVE: On montre d’abord que dim(C),(u)) < m(\;) par une preuve analogue a celle de
la Proposition 2.17 : posons n; = dim(Cy,(u)). Comme Cly,(u) est stable par u, la restriction

Ui = U, est un endomorphisme de Cj,(u). De plus on a Ker(u; — )\iIch(u))ai = C),(u).

Donc le polynéme Q(X) = (X — A;)® est un polynéme annulateur de w; et ceci montre que
Ai est I'unique valeur propre de u;. Soit B; une base de Cy,(u) dans laquelle la matrice de u;
est triangulaire supérieure. On compléte B; par une famille de vecteurs £ de fagon a ce que
B = B; U L soit une base de E. Alors :

Ai aiz - a1n,
0
A
Matg(u) = | . - Gy 1
0 --- 0 \;
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On en déduit alors que :
Xu(X) = (A = X)"xB(X)
et donc (\; — X)™ divise x(X).

Cela implique que n; < a;. On a donc :

dim(E Z dim(C)y, (u an i a; = dim(FE
i=1

On déduit que n; = «;. 0O

Exercice de cours 2.34 Montrer que ce résultat est compatible avec les calculs d’espaces ca-
ractéristiques que vous avez faits dans l’exercice 2.33.

2.5.3 Décomposition de Dunford-Jordan
Théoréme 2.78 (Décomposisition de Dunford-Jordan) Soit v € L(E) tel que x, soit
scindé dans K[X]. Alors il existe un unique couple (d,v) d’endomorphismes de E tel que :

1. u=d+v.

2. dov=vod.

3. d est diagonalisable et v est nilpotent.
T

,
De plus st p,(X) = H(X — X%, alors d = Z)\ipi ot (pi)1<i<r est la famille de projecteurs
i=1 i=1

associés a la décomposition E = @CAi (u), et lindice de v est N = max (f3;).

1<i<r
i=1 =

PREUVE: Ona E = @ Cy, (u). Soit (p;)1<i<r la famille de projecteurs associés a cette décom-
i=1
T

position. Posons d = Z)\ipi. Alors d est un endomorphisme diagonalisable (voir Proposition
i=1
2.65). Posons maintenant v = u — d. Alors :

u—u—z)\zpl—uozlvz Z/\zpl—z u—Xldg) o pi

=1

Montrons que vod = dov.

vod (i(u—/\IdE opz) Z)\Jp]

=1
= Z )\j(u — NlIdg) op; o pj

1<, g<r

= Z /\J(u — /\ZIdE) Opj o Pp;

I<i,g<r
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Comme pour tout couple (4, j) € {1,---,7}?, les sous-espaces C, (u) sont stables par (u—\;1dp)
alors (u — N\Idg) o pj = pj o (u — Asldg), par la Remarque 2.64. Donc :

vod= Z Ajpj o (u— NIdg) o p;

1<i,y<r
=dov

Montrons maintenant que v est nilpotent d’indice N = max (Bi). Comme pour tout i € {1,--- , 7},

<isr

les sous-espaces Cly, (u) sont stables par (v — A\;Idg), on a (voir la remarque 2.66) :

-
I/N = Z(U — )\JdE)N O p;
i=1

Or N > ; pour tout i € {1,---,r} et §; est I'indice de u — \;Idg d’apreés la proposition 2.76.
Donc Ker(u — \Idg)Y = Ker(u — \Idg)? = C), (u).

Soit # € E. Alors pour tout i € {1,---,7}, pi(x) € Ker(u — \Idg)™. Donc pour tout
r € E, vN(z) = 0 ce qui signifie que vV = 0 et v est nilpotent. Soit j € {1,---,r} tel
que B; = N. Alors dans ce cas Ker(u — \Idg)V ! ¢ Ker(u — \Idg)YN = Oy, (u). Donc soit
x € Oy, (u) \ Ker(u — MIdg)V =L Alors p;(x) = 0 pour tout i # j et :

r

N @) =) (u = Addp) N (i) = (u— Aldp) N (2) # 0
1=1

Donc v est nilpotent d’indice N.

I nous reste & montrer I'unicité du couple (d, v). Soit (d',v') vérifiant les hypothéses 1, 2 et
3 du théoréme. Notons N’ I'indice de v/. Soit X € Sp(d') et x € Ey/(d’) \ {0}. Alors comme u et
d" commutent :

Donc Ker(u — N1dg)N' # {0}. Il s’ensuit d’aprés la remarque 2.69 que Ker(u — N'Idg) # {0} et
N € Sp(u). Donc Sp(d') C Sp(u). De plus on déduit de ce qui préceéde que :

Ex(d") € Cx(u)

Notons Sp(d’) = {\|, -+, A\.}. Comme d’ est diagonalisable :

E= @EA; (d) @C,\;(U)
i=1 i=1
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Donc E = @ng(u). On en déduit que {N,--- , AL} = {\1, -, A} et Sp(d’) = Sp(u). Done
i=1
pour tout i € {1,--- ,r}, E),(d') = C),(u) et pour tout = € E on a :

d'(z) = Z d'(pi(x)) = Z Aipi(z) = d(x)
=1 i—1

Doncd=d etv=1". 0O

Remarque 2.79 Siu est diagonalisable, sa décomposition de Dunford-Jordan est donc u = u+0
(c’est-a-dire d = u et v =0).
Exercice de cours 2.35

1. Déterminer la décomposition de Dunford-Jordan des matrices A et C.

123
2. Déterminer la décomposition de Dunford-Jordan de la matrice [0 4 5 |. Attention c’est
006
un piége.

Remarque 2.80
1. Sp(d) = Sp(u).
2. YA € Sp(u) , Ex(d) = Cx(u).
3. Y\ € Sp(u), Cx(u) est stable par v et par d.

2.6 Applications et exemples : suites récurrentes

2.6.1 Calcul des puissances d’un endomorphisme

Soit u € L(FE) tel que x,, soit scindé dans K[X]. Soient A1,---, A, les valeurs propres (dis-
tinctes) de u. Alors :

On rappelle d’autre part que :
Ker(u — \Idg) ™! ¢ Ker(u — MIdg)% = Ker(u — \Idg)® = Cy, (u)

et que 1 < B; < a; = dim(CYy, (u)).

D’aprés le théoréme 2.78 il existe un unique couple (d, ) d’endomorphismes de E vérifiant les
propriétés 1,2,3 du théoréme. Notons m l'indice de v. Soit k € N alors comme d et v commutent
on peut appliquer la formule du binéme de Newton ce qui donne :

e

=0
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Sik>m—1, alors :

m—1
=3 <I;) iy

i=0
Maintenant soient des bases Bi,--- , B, respectivement de chacun des sous-espaces caractéris-
tiques Cy, (u), -+, Cy,(u). Considérons la base de E définie par B = By U --- U B,. Dans ce cas
comme E},(u) = C),(u) pour tout ¢ € {1,--- ,r} on a:
A1
A1
Mats(d) = O 0

A

et Matp(v) = Matp(u — d). De plus comme Cj,(u) est stable par v, en posant A = Matg(u),
D = Matg(d) et N = Matg(v) alors A est une matrice diagonale par blocs et pour k > m — 1
on a:

m—1 L
k _ k—i a7t
AR =% (Z> DN
i=0
On sait calculer les puissances de D. Il reste a calculer N2, ... N™ L

2.6.2 Une méthode de trigonalisation

On peut cependant faire les choses plus finement. Pour cela pour tout 7 € {1,--- ,r} comme :
Ker(u — \Idg) G - -+ € Ker(u — A\Idg)? ™! ¢ Ker(u — \Idg)?

On construit des bases B;1,- -, B; g, respectivement de Ker(u — A\Idg), - -+, Ker(u — M\ Idg)? de
telle maniére que :
Biy C--- CBig,

Autrement dit chaque base B; ;1 de Ker(u— )\iIdE)j ~1 est complétée par une famille libre L; de
Ker(u — A\jIdg)’ pour obtenir une base B; ; de Ker(u — M\ Idg). Remarquons alors que si v € L;
alors (u — NIdg) ! ((u — Nildg)(v)) = 0. Donc u(v) — \v € Ker(u — A\ Idg) ! = Vect(B; j_1).

Il s’ensuit qu’on a :

A1
Matg(u) = 1)
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et dans cette base N est une matrice triangulaire supérieure stricte.

2.6.3 Suites récurrentes

Soit (uy,) une suite a valeurs complexes.

Définition 2.81 Une relation de récurrence d’ordre k est une relation vérifiée par la suite (uy,)
du type :

Up+k = Qh—1Untk—1 + Qk—2Untk—2 + -+ - + aoUn (2.4)

pour tout n = 0.

Cette relation de récurrence est équivalente a la relation de récurrence matricielle :

Xn+1 = AX,
A1 @p_g -+ -+ ag
Un+k—1 1 0 0
pour tout n > 0 o X,, = : € Mpi1(K) et A = 0 B <
Un : :
0 0 1 0

M (K). Un calcul facile permet de voir que pour tout n > 0, X,, = A" Xj. Calculons le polynoéme
caractéristique x 4. Alors :

a/k—l — A a/k—2 “ .. “ .. ao
1 N |
xXA(A) = 0 1
0 0 1 =)
-2 0 0
0 —A 0
=0 1 " |+ Dyt = (=N + Dy
0 0 1 =)
ou :
a’?, a/'Z,—l o« e PR ao
1 =) 0
D, =10 1
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En développant suivant la premiére colonne on remarque que D; = (—1)'a;A\* — D;_1 et par
récurrence on montre que :

Di = (—1)i Z aj/\j
7=0

et :
xa(A) = (—1)F (Ak N g ao)
Si on travaille dans C, x4 est scindé.
Supposons d’abord que toutes les racines de x4 soient distinctes. Notons Ay, .-+, Ax ces
k—1
-
Ai
racines. Alors pour tout i € {1,--- ,k}, V; = : est un vecteur propre associé a \; car
Ai
1

ak_l)\f 4+ tarh+ag= )\iC
D’aprés la remarque 2.23, on a D = P~'AP ot P est la matrice de My,(K) dont les vecteurs
colonne C;(P) vérifient C;(P) =V;, et :

A1 0
D=
0 Ak
C1
Donc notant P~1 X, =
Ck
)\? 0 C1 01)\711
X, =A"Xg=PD"P'Xy=P =P
0 /\Z Cl Ck)\Z
Donc X, = 1 ATVL + -+ + ¢ AR Vg, dou
Proposition 2.82 Supposons que x4(X) = (=1)* (Xk —ap Xl X — ag) a k ra-
cines distinctes N, ..., \i. Alors, les suites qui vérifient la relation de récurrence (2.4) sont les

suites définies par
Up = AT + -+ AL,

ol c1,- -+ ,Cr sont des constantes quelconques.

Remarque 2.83 Les coefficients inconnus cq, - - - , ¢ sont déterminés par les k premiéres valeurs
ug, - ,Uk—1 de la suite.
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Le cas o les racines ne sont pas distinctes est plus complexe. Traitons ce cas au travers d’un
exemple. Considérons la suite récurrente suivante vérifiant pour tout n > 0 :

Un43 = Upt2 + 8upt1 — 12uy,

La matrice A définie comme ci-dessus vaut :

Et d’aprés ce qui a été fait plus haut :
xa(A) = —(A* =A% = 8A +12) = —(A —2)*)(\ + 3)

Donc les valeurs propres de A sont 2 et —3 de multiplicités respectives 2 et 1.

4
D’autre part dim(E2(A)) =1 et Ey(A) = Vect(U) o U = | 2 |. De plus le systéme :
1
x
(A-2L)%*[y] =0
z
0
est équivalent a x — 4y + 4z = 0 d’ou l'on déduit qu’en posant V = | 1 |, {U,V} est une base
1
de l'espace Ca(A). De plus AV =2V —U.
-9
Comme E_3(A) = Vect(W) ou W = [ 3 |, (U, V,W) est une base de R3. Donc si on pose
—1
4 0 -9
P=1|2 1 3 |ona:
1 1 -1
2 -1 0
ptap=[(0 2 0 |=D+N
0 0 -3
20 0 0 -1 0
ouD=|0 2 0 |J]eteN=[0 0 O0].CommeN estnilpotente d’indice 2, on déduit que
0 0 -3 0 0 O
pour n > 1:
Un+2 Uz Uz
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on C =pP1

et

u2
U1
Uug

C1
C2
C3

Un4-2
Un+1
Un
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. Donc :
4 0 -9 on _pon—l 0 c1
=12 1 3 0 on 0 Co
11 -1 0 0 (-3)" s

Uy = 12" + c(—n2" L 4+ 27) — ¢3(—3)"



Chapitre 3

Systémes différentiels linéaires a
coefficients constants

Dans toute la suite le corps K considéré est R ou C.

3.1 Exponentielle d’une matrice ou d’'un endomorphisme

3.1.1 Espaces vectoriels normés

La notion d’espace vectoriel normé fait ’objet d’un cours spécifique au S4. Nous nous conten-
tons ici d’énoncer les résultats de cette théorie qui nous seront utiles pour résoudre les systémes
différentiels.

Définition 3.1 Soit E un K-espace vectoriel. On appelle norme sur E toute application N :
E — RT vérifiant :

1. N(z) =0 2 =0.

2. V(N z) e Kx E ; N(A\z) = [A\|N(z).

3. V(x,y) e EXE ; N(x+y)<N(z)+ N(y).

Un espace vectoriel muni d’une norme est appelé espace vectoriel normé.

Dans la pratique on note pour tout x € E, N(z) = ||z|| et (E,| ||) désigne I'espace vectoriel
normé associé.

Exercice de cours 3.1 Soit E = R?%. On note, pour (v,y) € E,
— I y)lh = || + 1yl ;
— @yl = Va? +y?;
— @, y)llec = sup(lz[, [y])
Montrer que || |1, || ||2 et ||co sont des normes. Quelles sont les “cercles unités” pour ces normes,

définis par Uéquation ||(z,y)|i =17

Voici maintenant quelques résultats importants pour la suite :

65
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Définition 3.2 On dit qu’une suite (xn)neny de E tend vers x € E si ||z, — x| — 0 quand

n — oo.
Définition 3.3 Deux normes || ||1 et || |2 sont équivalentes s’il existe o, B > 0 tels que pour
toutx € B :
allzfly < flzll2 < Bzl
Les suites convergentes pour || ||1 ou || ||2 sont alors les mémes et ont la méme limite.

Théoréme 3.4 Si E est de dimension finie alors toutes les normes sont équivalentes.

Proposition 3.5 Si E est de dimension finie muni d’une base (e1,--- ,ey) alors toute suite

n n
(zk)ken de E telle que xyp = Zfﬂk,iei pour tout k € N tend vers x = inei si et seulement si
i=1 i=1
pour tout i € {1,--- ,n} :
Tpi — x; quand k — 00

PREUVE: Il suffit de prendre la norme sup, définie par || Y " | zi€illoc = sup; |@;|, pour obtenir
I’équivalence indiquée. 0

Proposition 3.6 Si (E,|| ||) est un K-espace vectoriel normé de dimension finie alors (E, || ||)
est complet. Autrement dit toute suite de Cauchy dans E est convergente. On rappelle qu’une
suite (Tn)nen est de Cauchy si :

Ve>0 , IN ; Vp,g=> N , |z, —z4l <e
PREUVE: Si on utilise la norme sup || ||, cela résulte de la Proposition 3.5. 0

Définition 3.7 Si (E,|| ||g) et (F,|| ||r) sont deux espaces vectoriels normés, alors f : E — F

est continue en x € E si pour toute suite (xp)nen de E telle que lim x, = x pour la norme
n——~oo

| |g alors lim f(x,) = f(z) pour la norme || ||p. La encore si E et F sont de dimension
n—aoo

finie l’ensemble des fonctions continues est le méme quel que soit le choiz des normes sur E et
F.

A partir de maintenant (E,|| ||) est un espace vectoriel normé de dimension finie n.

Donnons un exemple important de norme dans un espace vectoriel de dimension finie : soit

n
(e1,--- ,en) est une base de E. Pour tout x = E Ti€;, POSONS :
i=1

n
el =3 Jad
=1

Alors || ||; est une norme sur E.
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Définition 3.8 Soit Zuk une série de E. On dit Zuk converge absolument si la série
k>0 k>0

Z |lug|| converge.

k>0

Proposition 3.9 Soit Zuk une série de E qui converge absolument. Alors Zuk est conver-

k>0 k=0

gente.

N
PREUVE: Posons Sy = Zuk Alors pour tout p > ¢ :

k=0

P p
1S = Sall = || D el < D lusl
k=q+1 k=q+1

N
Comme Z ||uk|| est une série convergente la suite (Z ||uk||> est de Cauchy. Alors, pour
k=0 NeN

k>0
tout € > 0 :
P
AN Vg2 N, > ful<e
k=q+1

Donc :
VPaQ>N ) ”SP_SQH<5

Donc (Sn)nen est de Cauchy dans E qui est complet car de dimension finie. Donc (Sy)nen est
une suite convergente ce qui signifie que Zuk converge. O
k>0

3.1.2 Norme sur ’espace des endomorphismes et sur les matrices

Dans toute cette partie (E, || ||) est une espace vectoriel normé de dimension finie n.

Proposition 3.10 Soit u € L(E). Alors il existe une constante M telle que pour tout x € E :

[u(@)|| < M|z
De plus u est continue sur (E, || ).
n
PREUVE: Soit (e1,--- ,e,) une base de F et x = Zmiei alors :
i=1
n n n
Ju(z)]] = ;wiu(ez‘) < ; |zil[[u(es)]| < lfgiaé(Hu(ei)H); il = max ([lu(eq))ll=]lx
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Or toutes les normes étant équivalentes il existe un réel 8 > 0 tel que pour tout = € E, ||z|/1 <

Bllz||. Donc posant M = ﬂlrggix (llu(e;)]]), on a prouvé que pour tout x € E :
<ign

[u(@)]| < M|z
Maintenant si (x)gen est une suite de E' qui converge vers x, alors :
[u(zr) —u(@)]] = [[u(zr — )| < Mz — ||

Comme lim |zx — x| = 0, on conclut que lim wu(xp) = u(x) et u est continue.
k—>o0 k—>00

O

Exemple 3.11 Soit fa : R® — R" Uapplication linéaire associée a une matrice A = (a;;), et

soit la norme || |1 sur R™. On a |AX||; < (zm ]am\) 1X s

PREUVE: En effet,

> laigril <037 la gl
= 2 ;lai;l |zl
< (Suglausl) (il

De la proposition on déduit que sup ||u(z)|| est bien défini.
e
[l][=1
Proposition 3.12 Pour tout u € L(E) définissons :
[full] :=sup [lu(z)]
el
llell=1

Alors ||| ||| est une norme sur E qui satisfait :
LveeE, |lu(@)| < |lulllz]-
2. Y(u,v) € (L(E))?, ([uov|l < lulllllv]I-

Il |I| s’appelle norme d’algébre.

PREUVE: En effet, on déduit de la définition de |||u]|| que ||u(x)|| < |[|ul|| ||z|| pour tout =z € E.

Soit maintenant x € E, on a
[wov(@)|| < [[lulll lo@)I| < [[lulll 1ol =]l

en appliquant deux fois cette propriété.

O

Proposition 3.13 On considére l’espace vectoriel des matrices colonnes E = M, 1(K) muni

d’une norme || ||. Soit A € My (K) et définissons :
Al := sup [[AX]|

Xek

[ X[l=1

Alors ||| ||| est une norme sur E qui satisfait :
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1L vX e B, [|AX] < [I[A[I[lX]-
2. Y(A,B) € Mn(K))?, IABI[ < IANNIBII-

Il Il s’appelle norme matricielle.

PREUVE: Pour tout A € M,,(K), considérons I’application :

fA:E—>E

X — AX
Alors f4 est un endomorphisme de E et |||Al|| = ||| fall|- L’assertion 1. est évidente. Pour Ias-
sertion 2. on a :
IABII| = Il faslll = [llfa o Falll < [[[alllll 75l = A BI

|
3.1.3 Dérivabilité et intégration des fonctions a variable réelle et & valeurs
dans un espace vectoriel

Dans toute cette partie (E, || ||) est une espace vectoriel normé de dimension finie n.

Définition 3.14 Soit I un intervalle non vide de R. On dit que la fonction f : I — FE est
dérivable en tg € I, s’il existe un vecteur de E noté f'(tg) tel que :

|30+ 1) = st - /e — 0

quand h — 0.
Si f est dérivable sur I, lapplication :
1 — FE
Eoe ()

s’appelle la dérivée de f sur I.

Proposition 3.15 Soit I un intervalle non vide de R. On suppose que E est muni d’une base B.
Soit f: I — E une fonction. Notons (f1,---, fn) les fonctions composantes de f dans la base

n

B (ieNtel, f(t)= Z fi(t)ei). Alors f est dérivable en to € I si et seulement si les fonctions
i=1

fi sont dérivables en ty € I pour tout i € {1,--- ,n}, et dans ce cas f'(to) =D, fl(to)ei.

PREUVE: On peut supposer que ||z|| = ||z]|1 ou ||z||1 est défini via la base B. Soit d = >_ aje; :
on a

— 0

|5 rtt0+ = 0) = Y e
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si et seulement si

S |5 ilto + 1) = fitto)) — ai| — 0.
ce qui équivaut finalement & Z
Vi, | ilto + ) = £(to)) — as| —0,
soit le fait que chaque fonction f; est dérivable en ¢y de dérivée f/(to) = a;. 0

Proposition 3.16 Soit I un intervalle non vide de R et soit f : I — E une fonction.

1. Soient B et C deux bases de E. Alors les fonctions composantes de f dans B sont intégrables
au sens de Riemann sur I si et seulement si les fonctions composantes de f dans C sont
intégrables au sens de Riemann sur I. Si les fonctions composantes de f dans une base
sont intégrables, on dira alors que f est intégrable.

2. Soit B = (u1,--- ,uyn) une base de E et (f1,---, fn) les composantes de f dans B. Alors

la quantité :
> [ i u
i=1 /1

ne dépend pas de la base choisie et est notée /f(t)dt.
I

PREUVE: On note B = (uy, - ,up) et C = (v1,- -+ ,v,). On note aussi P la matrice de passage
de B a C, de sorte que par définition Vj,v; = Y. P; ju;. Soient (f;) les coordonnées de f dans B
et (g;) les coordonnées de f dans C : on va exprimer une relation entre les fonctions (f;) et (g;).
Pour cela, on calcule :

Zfi(t)uz‘ =f@t)= Zgj(t)vj = Zgj(t) (Z Pz‘,juz‘> => ZPi,jgj(t) u; -

i

On en déduit que
Vi, fi(t) = > Pijg;(t) .
J

Ainsi, si les fonctions g; sont intégrables, les fonctions f; le sont aussi. Par symétrie, on obtient
I’équivalence.

De plus,
> (f[ fi(t)dt) ui o= 3 (f[ Zj Pi,jgj(t)dt> Uj
= X (Jrgi(W)at) 32, Piju
= Zj (f[ gj(t)dt) vj -
Ceci montre que la quantité > 7", [} (fi(t)dt) u; ne dépend pas de la base (u;) choisie. 0O
Désormais l'espace £ = M, 1(K) est muni d’une norme et M, (K) est muni de la norme
matricielle associée.
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Proposition 3.17 Soient :

A I — Mpa(K) B : I — M,pK)
to— AR t — B
deux fonctions dérivables sur I. Alors la fonction
AB : I — My(K)
t — A(t)B(t)

est dérivable sur I et :

VteI,(AB)'(t) = A'(t)B(t) + A(t)B'(t).
PREUVE: Soit ¢,h € R tels que [t — h,t + h] C I. Comme A et B sont dérivables en ¢, on a

A(t+h) = A(t) + hA'(t) + o(h)
B(t +h) = B(t) + hB'(t) + o(h)

On en déduit que A(t+ h)B(t+h) = A(t)B(t) + h(A(t)B'(t) + A'(t)B(t)) + o(h). Ainsi, AB est
dérivable en t et (AB)'(t) = A(t)B'(t) + A'(t)B(t). 0O

3.1.4 Exponentielle d’une matrice

1
Proposition et définition 3.18 Pour tout A € M, (K), la série Z HAk est convergente. Sa
k=0

somme notée e? ou exp(A) s’appelle l'exponentielle de A. De plus :
H‘QAH‘ < elllAll
Lok 1 k 1 k Lo 1 k
PREUVE: EA < EH‘A Il < EH‘AH’ . Or la série ZH’HAH‘ est convergente donc
k>0
1 1
Z HAk est convergente. Posons s = Z ﬁAl' Comme :
k>0 i=0
F 1 GNIe} "1
. . . N
S 2l < S|k < 3 Zmanr < evan,
i=0 i=0 i=0

on a |||sg||] < el pour tout k. Soit € > 0 et soit ko tel que |||e* —si||| < € pour tout k > ko : on
en deduit que [[le4[| < f[|s + (e = sp)ll| < llselll+llle? = sill] < e* +e. Comme cette inégalite

est vraie pour tout ¢, on a [|le]|| < ell4lll. -

Proposition 3.19 1. Soit A € M,(K) et P € GL,(K). Alors :

1 -
€P AP:P 1€AP
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2. Soit (A, B) € M,(K)2. Si AB = BA alors :

cAB — JATB _ B A

et
Be? = e4B

3. Soit A € M, (K), alors e est toujours inversible et :
(eA)—l _ €_A

PREUVE:
1. Soit A € M, (K) et P € GL,(K). Alors :

k 1 k 1 4 k 1 A
p! ( il/ﬁ) P=>" 5P—lAZP => E(P_lAP)l
! k. !

=0 =0

Or l'application X +—— P~!X P est un endomorphisme de M,,(K) qui est de dimension
finie, donc elle est continue et :

k k
1 . 1 .
1 Ap _ p-1 . Lo _ -1 Ry
P e"P=P (khmoogo i!A>P khmOOP (;0 Z,!A>P.

Cette limite vaut donc i

) 1, , -1
lim —(PTIAP) =P AP,
k—o0 4 gl
1=0
2. Pour montrer le point 2. nous avons besoin du lemme suivant :

Lemme 3.20 Soient A = ZAk et B = ZBk deux séries absolument convergentes de
£>0 k>0

k
M, (K). Alors la série C = Z (Z AkBkl> est absolument convergente et C' = AB.
k>0 \1=0

Notons, par convergence uniforme de A et B,

a:= (|4l et b= [IBll.

i>0 i>0

La convergence uniforme est conséquence de la remarque suivante :

S llCl < i (Shoo ARBkll) < 7o Sheo AN NIBe-ll
< o X Al 1113511
< (oAl (i Bl
< (oAl (5 Bl
< ab.
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Ces inégalités montrent d’ailleurs que la série de terme général ¢; := 22:0 AL 1| Bi—kll|
est convergente. Soit donc N tel que Vn > N,

Disa IJAll[ < e

2jsallBilll < e

La derniére inégalité implique que |||C =Y Cill] < X pn a0 < e
Pour montrer que C' = AB, on fixe € > 0 et on montre que |||C — ABJ|| < (a + b+ 2)e.

Ona:
IC =22 j<n AiBjlll < IC =200 Cilll + 111 2200 C1 = 225 5<n AiBill|

< €+ 2 i<nsivisn |14 Bl
< e+ Dijcnitgon Al 1Bl
< €+ X jneiri<on Al IB; ]
= 6—|_Zl21:1n+1 C
< 2e

Par ailleurs, on a aussi :

[|AB — Ei,jgn Az'Bj||| = Zizo AiB — Zz‘,jgn AszIH

= H| Zign Ai(B - ngn Bj) + Zi>n AiBH’
< Dicn MAMIB = 2254 Billl + [[[(X55, Ai) Bl
< icn llAillle + 11122555 Al 1B
< ae-+eb
< (a+Db)e

En mettant ensemble les deux derniéres inégalités obtenues, on déduit :

e = AB|| < lIC = Y~ AiBjll| + Il Y AiBj — AB|| < 2¢ + (a + b)e,

comme souhaité.

ij<n

ij<n

Montrons maintenant le point 2. Comme A et B commutent on peut appliquer la formule

du bindéme de Newton :

1
k!

k
1
k _
(A+ B) _HZ
=0
k

(3

| . .
k! : 'Asz—z

B’“’)

> (1) (o
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1 1
Comme g — A et g — B* sont absolument convergentes, d’aprés le lemme la série
k! k!
k>0 k>0

1
Z H(A + B)* est absolument convergente et :

Spoer - S8 () - (Se) ()

d’ou le résultat.

=~

O

Proposition 3.21 Soit A € M, (K). Alors Uapplication R — M,(K) , t — €4 est de classe
C™ et (et) = AetA.

PREUVE: Montrons d’abord que t — et? est dérivable :

- G-

i [ =P
= |lle Zk!A

k=2

AP
> A

k=2

'H:L(e(t—&—h)A ety 4ot

= |h]

Supposons |h| < 1. Donc :

< [hll| tA\HZ HIAHI’“

< Ihl\l\etA\!\e”'A”‘ —0

H ‘ %(e(t—l-h)A _ 6tA)

quand h —» 0. Ceci montre que ¢ — e est dérivable de dérivée ¢ — Ael4. 0
M O - 0
Proposition 3.22 Soit D = 0 une matrice diagonale. Alors :
0 0 An
eM 0 0
oo |0
S
0 0 et

En particulier pour tout A € K, on a eM» = e I,.
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N—4o0

PREUVE: eP = lim (Z k'Dk> Or :

Y1

dAF 0 0
|
A0 0 =k

| | . . . . . .
k=0 k! k=0 k!t : . 0 : . . 0
0 0 Ak N 4
" 0 . Z o Ak
k—0
1
Notons Z ka = (l’g)1<i7j<n et eP = (2ij)1<ij<n. Pour tout i,j € {1,--- ,n}, notons Ej;; la

k=0
matrice dont tous les coefficients sont nuls sauf celui de la ligne 7 et de la colonne j qui est égal

al.

N
1
Les coefficients de — D" et eP ne sont rien d’autre que les coordonnées respectivement
k!
k=0
N1 i
de Z: HD’“ et de e dans la base {Ei;}1<ij<n. Comme Nl_i)n}roo (Z k!Dk> =P N — T
ce qui prouve que :
+oo
Lok
> M0 0 R
— k! eM o0 .- 0
oD — 0 : |0
0 E o0
—+00 >\n
1. 0 0 e
0 e 00y R
k=0

3.2 Calcul pratique de ’exponentielle d’une matrice

De maniére générale si A € M,,(K) et si son polyndme caractéristique est scindé, alors d’aprés
la décomposition de Dunford, il existe une matrice D diagonalisable et une matrice N nilpotente

telles que :
1. A=D+ N.
2. DN =ND.

Donc comme D et N commutent :
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Comme D est diagonalisable il existe P € GL,(K) telle que :

w0 - 0
P lDp = 0
: . 0
o -.. 0 pn

D’autre part IV est nilpotente donc il existe un entier p < n tel que N? = 0. Donc :

e“l 0 N 0
: 1 1
A-p| P—1<In+N+,N2+---+ 'Np_1>

0 --- 0 etn
En fait on n’a pas besoin de calculer D et N. En effet soient A1, -+, A, les valeurs propres
de A et pour tout ¢ € {1,---,r}, C\, = Ker(A — \jI,)* les sous-espaces caractéristiques de
A. Pour tout ¢ € {1,---,r} on construit une base B; de chacun des sous-espaces Cy,. Comme

T 7

M, 1(K) = EBC)‘“ B = U B; est une base de M, 1(K). Soit P la matrice de B. Comme les
i=1 i=1
sous-espaces caractéristiques sont stables on a :
Aq 0]
A'=pltap = ,
O A,

ou les matrices 4; € M, (K). Dans cette base D est diagonale, c’est-a-dire que

A11041 O
P 'DP = -
0 Ao,
Posons N’ = P~'NP alors :
)\ljoq O
N =P 'NP=P ' (A-D)P=A— .
0] Arly,
et :
e>‘1Ia1 0 0
1
eA:P 0 (In+N/+N/2+"'+ N/pl)Pl
0 2! (p—1)!
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On peut encore raffiner les choses. De maniére similaire a la preuve de la proposition 3.22 on
peut montrer que :

el @)
€A _ 6PA/P71 — PeA’P—l - P P_l
@) efr
Calculons e pour tout i € {1,---,r}. Alors :
eAi — e(Az'*)\iIai)Jr)\iIai _ ekie(Ai*)\ifai)
Or :
Alo, 0 A — Milq, @)
N, = Al — °. = °
O Mla, @) A — Mg,

On a donc pour tout i € {1,---,7r}, (A; — N\ila,)P = 0 et méme (A; — \;Io,)% = 0 ou B; est
I'indice de A; — A\ily, :

eAi _ e)\i I, + N( + lN(Z N 1 N’ﬂi—l

- TR Bi—1r "

ol Nz, == A,L - )\iIai-
Remarque 3.23 On a vu dans la proposition 3.12 que l'on pouvait munir L(E) de la norme
d’algebre ||| |||. De la méme maniére que pour les matrices on peut définir ’exponentielle d’un
endomorphisme et tous les énoncés précédents sont transposables dans le cadre des endomor-
phismes.

3.3 Systémes différentiels linéaires a coefficients constants

K = R ou C et I désigne un intervalle non vide de R. A partir de maintenant on identifie
M, 1(K) et K™

Définition 3.24 Soit n € N*. Pour tout i € {1,--- ,n}, soit b; : [ — K une fonction continue
et pour tout (i,j) € {1, ,n}? soit a;; € K.

1. Le systeme :
/

Y1 = auyit+ - Faipyn + b1
(8£) : : :
yéL = am¥1t+ - FOnpYn + by,
s’appelle systéeme différentiel linéaire d’ordre 1 a coefficients constants.
2. Le systéeme :
Yy = anyit+ -+ +ainyn
(SH) : : :
yiz = any1t+ - Fappln

s’appelle systéeme différentiel linéaire homogéne associé a (SL).
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Résoudre (SL£) ou (SH) revient a trouver un intervalle non vide J C I et des fonctions y1,- -+ ,yn
n
dérivables sur J et vérifiant le systéme considéré. Si on note A = (aij)i<ij<n, ¥ = | ¢ | et
Yn
by
B=|: | alors:
br,

(SL) < (L) Y' =AY + B
et
(SH) < (H) Y' = AY

Résoudre (£) ou (H) revient a trouver un intervalle non vide J C I et une fonction Y : J — K"
dérivable sur J et vérifiant respectivement (£) ou (H).

3.3.1 Systéme différentiel linéaire homogéne

Notons C(I,K™) I'espace vectoriel des fonctions continues de I dans K.

Théoréme 3.25 L’ensemble Sy des solutions sur R de H : Y' = AY est un sous-espace vectoriel
de C(R,K") de dimension n formé de fonctions de classe C*.
Plus précisément :
Sy = {t — C on C e K"}

De plus pour tout (to,Yp) € R x K™ il existe une unique solution Y de H telle que Y (ty) = Y.

PREUVE: Il est immédiat que la fonction nulle appartient a Sy et que si (Y1,Y2) € 5'72{ alors
pour tout (A1, A2) € K2 :
MY+ Y, e SH

Donc Sy est un sous-espace vectoriel de C(R,K").
Maintenant soit Y € Sy et soit Z(t) = e t4Y (t). Alors :

Z'(t) = —Ae Y (t) + e Y (t) = —Ae MY (1) + e A AY (1)

Or A et e7*4 commutent donc Z'(t) = 0 pour tout ¢ € R. Donc il existe C € K" tel que Z(t) = C
pour tout t € R et Y(t) = et4C.

Réciproquement on vérifie facilement que pour tout C' € K", la fonction t +— Y'(t) = etAC
est solution de Sy.

D’autre part soit (to, Yp) € R x K". Alors :

Y (tg) = Yy <= €40 = Yy <= C = e 104y
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Théoréme 3.26 Soit A € M, (K) telle que x 4 est scindé. Notons pu1, -+ , pun, les valeurs propres
de A comptées avec multiplicité et soit (Uy,--- ,Uy) une base de K™ constituée de vecteurs ap-
partenant aux sous-espaces caractéristiques. Plus précisément on suppose que :

vie{l,--,n}, U € Cy(A)

Alors :
n Bi—1 ik €1
Sy =< t— Z c;etit (Z E(A — uiIn)kU,) ot ]l e K®
i=1 k=0 c
n
ot fB; est la multiplicité de p; dans pa.
En particulier si A est diagonalisable alors :
n C1
Sy=<t— Z cie’'U; ot : | eK”
=1 cn
Et dans ce cas (Uy,--- ,Upy) est une base de K™ constituée de vecteurs propres de A.

PREUVE: Le polynoéme caractéristique x4 étant scindé on a :

r

xa(h) = (=)™ [T =2

i=1

T T
et comme K" = @C’Ai(A), on choisit une base B = (Uy,--- ,U,) de E telle que B = U B; ol
i=1 =1
pour tout i € {1,---,7}, B; est une base de Cy,(A).
Y est une solution de H : Y’/ = AY sur R si et seulement si Y (t) = e!AC ot C' € K™. Notons
n

(c1,--+ ,¢pn) les coordonnées de C' dans la base B. Alors C' = Z ¢;U;. Pour tout i € {1,--- ,n},

i=1
U; € Cp,(A) ot puq, -+, pi, sont les valeurs propres de A comptées avec multiplicité. Donc :
n n
t) = Z cieAU; = Z ettt A=)y,
n n
— Z ¢ 6/-thIn6t(A ﬂzIn Z G e,uzt t A— NzIn)UZ
=1 =

D’autre part on a vu que si 7; désigne la multiplicité de u; dans le polynéme minimal de A,
alors :

Ker(A — p;I,)" 1 ¢ Ker(A — p;I,) = Cy,(A)
De plus comme U; € C,;,(A), pour tout k > ~;, (A — uZIn)kUZ- = 0 et il s’ensuit que :

7171

k
Zce’“ (Z t — (A — pily) Uz)

k=0
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Remarque 3.27 1. Les formules du théoréme donnent un calcul implicite de e!d. En effet,
en vertu de la formule de changement de coordonnées, et comme Y (0) = C = > ¢;U;,
C1
ona | | =P C ou P est la matrice de passage de la base canonique de K" a B.
Cn
Autrement dit les colonnes de P sont Uy,--- ,U, et
c1
Y(t) = e 4P
Cn

ce qui permet de déduire que les colonnes de e!AP sont respectivement :

y1—1 tk Yn—1 tk
ettt <Z E(A — mIn)kU1> oo, ebnt (Z E(A — ,unIn)kUn>

k=0 k=0

2. On peut remarquer d’autre part que si N est la matrice nilpotente de la décomposition de
Jordan de A, alors en utilisant la forme de N apparaissant dans la preuve du théoréme
2.18 du chapitre 2 on a pour touti € {1,--- ,n} :

vi—1 k
t
6tNUZ‘ - (Z E(A - Mi[n)kUz)

k=0

3.3.2 Systéme différentiel linéaire non homogéne
Soient I un intervalle de R, B : I — K" une fonction continue et A € M, (K).

Théoréme 3.28 On suppose que l'ensemble Sp des solutions de L :Y' = AY + B est non vide.
Soit pg € Se. Alors :
Spi={I — K"t —s e2C + ¢y(t) ou C e K"}

PREUVE: Soit Y une solution de £ sur I. Alors :

(Y = @0)'(t) = Y'(t) — ¢4 (t) = (AY'(t) + B(t)) — (Apo(t) + B(t)) = A(Y(t) — ¢o(t))
Donc Y — g est solution de I'équation homogéne H : Y’ = AY. Donc Y (t) = etAC + ¢p(t) ou
CeK"

Réciproquement, on vérifie facilement que toutes les fonctions de la forme Y (t) = e!AC ¢y (t)
pour tout ¢ € I sont solutions.

O

Théoréme 3.29 (Méthode de la variation de la constante) L’ensemble Sy est non vide.
Plus précisément pour tout tg € I :

wo I — K™
t
t — wo(t) ::/ AR (z)dx

to

est une solution de L.
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t

PREUVE: Soit pour tout ¢ € I, la fonction ¢o(t) := / "4 B(z)dx. Montrons que g est
t

solution de L. ’

Remarquons d’abord que puisque tA et —zA commutent alors e(!=%)4 = etde—24 ¢ wol(t) =

t
etA/ e " B(x)dx. De plus :
to

oh(t) = Aett / t e " AB(x)dx + e e B(t) = Ago(t) + B(t)

to
D’ou le résultat. 0
Remarque 3.30 — Les solutions de H : Y' = AY s’écrivent Y (t) = e"AC avec C' € K". Si
Uon cherche une fonction dérivable C : I — K™ telle que po(t) = etAC(t) soit solution
de L on a :
0 = ¢p(t) = (Apo(t) + B(t)) = Ae'1O(t) + 4 C'(t) — (Ae'O(t) + B(t))

= 40'(t) + B(1).

Donc C'(t) = e P4 B(t) et on retrouve lexpression donnée dans le théoreme. Cette facon
de trouver une solution de L explique ['expression de "Méthode de la variation de la
constante”.

— Pour résoudre L il suffit tout simplement de trouver une solution particuliére pg de L et
toutes les autres solutions s’écrivent comme la somme de pq et d’une solution de H.

3.4 Equations différentielles linéaires & coefficients constants

K =R ou C et I désigne un intervalle non vide de R.

Définition 3.31 Soient n > 1, (ag, -+ ,an—1) € K" et b: I — K continue.
1. L’équation :
(L) y™ a1y 4t ary Fagy = b
s’appelle équation différentielle linéaire a coefficients constants.
2. L’équation :
(H) y™ a1y 4t ary Fagy =0
s’appelle équation différentielle linéaire homogéne associée a L.

Résoudre (£) ou (H) revient a trouver un intervalle non vide J C I et une fonction y dérivable
sur J vérifiant (£) ou (H).

Définition 3.32 Soient n > 1, (ag,--- ,an—1) € K" et b: I — K continue. On appelle équa-
tion caractéristique de ’équation différentielle :

(L) y™ + a1y 4 b ary +agy = b

[’équation :
2" a2 4+ dar+ag=0
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Théoréme 3.33 Soient n > 1, (ag, - ,an—1) € K". Considérons l’équation homogeéne :
H) vty ay +ay =0

Supposons que les racines de I’équation caractéristique soient A1, - -+ , A, de multiplicité respectives
at, -, ap. Alors lensemble des solutions Sy définies sur R de (H) est un sous-espace vectoriel
de C(R,C). Plus précisément :

S ={y €C®R,C) ; AP+, B) € Ca1[X]x - x Ca1[X] 5 y(t) =D M Pi(t)}

y(n_l)
PREUVE: Posons Y = 5, . Alors :
Yy
Y
_an—l —an_2 PR CEEEEY —ao
1 0 AU 0
Y = 0 1 : Y
0 e 0 1 0

Notons A la matrice du systéme différentiel obtenu. Les solutions de ce systéme sont de la forme :
Y(t) = e4C
ou C € C". Calculons le polynéme caractéristique de A. Alors :
xa(A) = (=) (A" + an X"+ ard + ag)

et les racines de x4 sont exactement les racines de I’équation caractéristique. Donc

r

xa(X) = (=0)" (X =)

i=1
T
Comme C" = @C’A ), il existe (Uy,---,U,) € HC’A ) tel que C = ZUi‘ Donc par un
i=1
raisonnement snnllalre a la preuve du théoréme 3. 26
ozz—l

ZtAU quﬁtmuﬂ ZAttA Niln) 7 = ZMZ A AU

Il s’ensuit que la derniére coordonnée de Y (t) qui n’est rien d’autre que y(t) vérifie :

a;—1

Ze/\tzakztk Ze)\tp
=1
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ou P; est un polynoéme de degré au plus a; — 1.

Réciproquement, I'espace des solutions Sy est donc inclus dans 'espace S’ des éléments de
la forme y(t) = >_I_, eM!Pi(t) avec chaque P; de degré au plus a; — 1. Comme &’ a comme
famille génératrice les éléments et avec 0 < m < o; — 1, qui sont en nombre Y a; =n, on a
dim S’ < n.

Par ailleurs le K-espace vectoriel des y(t) vérifiant (H) et le K-espace vectoriel des Y (t)
vérifiant Y/ = AY sont isomorphes. En effet, a 3 on peut associer le vecteur Y = (y™=1, ... /. )
etaY = (y1,...,yn) On peut associer y, : ce sont des isomorphismes inverses I'un de 'autre. On
en déduit que dim Sy = n. Comme Sy C &', on obtient S = &'.

Deuxiéme preuve de la réciproque, plus explicite :
Réciproquement il faut vérifier que si y(t) = Z e Pi(t) onl P; est un polynome de degré au
plus a; — 1 alors y est solution de (H). Considérz):nls I’endomorphisme suivant :
p : F — E
y — ply) =y
ou E=C>®(R,C). Alors si y € Sy, on a :

T

y ™M tan_1y "4 tary +agy = (p"+an-1p" D+ +arp'+aop) (y) = [[(p-MIde)* (y) = 0
i=0

On va alors montrer le lemme suivant :

Lemme 3.34 Soit A € C et o« > 1 un entier. Alors :
(p — Mdg )*(t* M) =0
PREUVE: On a:

(p — \dg )(toe—le)\t) =p toz—leAt) _ )\ta—le)\t

o — 1)ta726)\t + )\tozfle)\t _ Atafle)\t
oa—1

)toz—26)\t

—~~

Soit j € {1,...,a —1}. Pour j = 1, on vient de montrer que :
(p— Ndg )7 (t*7teM) = (o — 1)t 17N
Pour j > 2, supposons que :
(p— ANdg ) (1 teM) = (a — 1) (= 2) ... (o — j)t 1T
et montrons que cette relation reste vraie au rang j + 1.

(p— MNdg YTt teM) = (p— Mdg ) (o — 1) (@ — 2) ... (. — j)t* M)
=(a—1)(a—=2)...(a—j)(p(t* M) — o1 7T M)
=(a—1D(a—2)...(a —j)(a—1—je1=0FrhA
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La relation est donc vraie au rang j + 1 et on conclut qu’elle est vraie pour tout j € {1,...,a}.
En prenant j = «, on obtient la relation désirée. 0
De ce lemme on déduit immédiatement que pour tout P; € C,,_1[X], la fonction ¢ —

6)‘itPi(t) € Sy.
|



