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Exercice 3 : Étude du groupe affine et de ses actions

1. Structure algébrique

(a) Soit M =

(
a b
0 1

)
∈ G. On a det(M) = a × 1 − 0 × b = a. Puisque a ∈ R∗, det(M) ̸= 0,

donc M ∈ GL2(R).

— L’élément neutre I2 =
(
1 0
0 1

)
appartient à G (a = 1, b = 0).

— Soient M =

(
a b
0 1

)
et M ′ =

(
a′ b′

0 1

)
dans G.

MM ′ =

(
aa′ ab′ + b
0 1

)
Comme a, a′ ∈ R∗, aa′ ∈ R∗. Et ab′ + b ∈ R. Donc MM ′ ∈ G.

— Inverse : M−1 = 1
a

(
1 −b
0 a

)
=

(
1/a −b/a
0 1

)
∈ G.

G est donc un sous-groupe de GL2(R). Le groupe n’est pas abélien. Par exemple, pour A =(
2 0
0 1

)
et B =

(
1 1
0 1

)
, on a AB =

(
2 2
0 1

)
mais BA =

(
2 1
0 1

)
.

(b) Cherchons le centre Z(G). Soit M =

(
a b
0 1

)
∈ Z(G). Pour tout X =

(
x y
0 1

)
∈ G, on doit

avoir MX = XM . (
ax ay + b
0 1

)
=

(
xa xb+ y
0 1

)
Cela impose ax = xa (toujours vrai) et ay+ b = xb+ y. Pour que ay+ b = xb+ y soit vrai pour
tous x ∈ R∗ et y ∈ R, prenons y = 1, x = 1 =⇒ a + b = b + 1 =⇒ a = 1. L’équation devient
1y + b = 1b+ y =⇒ b = b. Cependant, si on prend y = 0 et x = 2 dans l’équation initiale avec
a = 1 : b = 2b =⇒ b = 0. Donc Z(G) = {I2}.

(c)

i. Vérifions la distinction par conjugaison. Soit M =

(
a b
0 1

)
∈ G et K =

(
1 k
0 1

)
∈ H.

MKM−1 =

(
a ak + b
0 1

)(
1/a −b/a
0 1

)
=

(
1 −b+ ak + b
0 1

)
=

(
1 ak
0 1

)
∈ H

Donc H est un sous-groupe distingué de G.
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ii. ψ(b)ψ(b′) =
(
1 b
0 1

)(
1 b′

0 1

)
=

(
1 b+ b′

0 1

)
= ψ(b+ b′). ψ est un morphisme bijectif, donc

un isomorphisme de (R,+) vers (H,×).

(d) ϕ
(
a b
0 1

)
= a.

i. ϕ(MM ′) = ϕ

(
aa′ . . .
0 1

)
= aa′ = ϕ(M)ϕ(M ′). C’est un morphisme. Il est surjectif car

pour tout x ∈ R∗, la matrice
(
x 0
0 1

)
est un antécédent.

ii. ker(ϕ) = {M ∈ G | a = 1} = H.

iii. Théorème d’isomorphisme : Soit f : G→ G′ un morphisme de groupes. Alors G/ ker(f)
est isomorphe à Im(f).

iv. Ici, Im(ϕ) = R∗. Donc G/H ≃ (R∗,×).

2. Action de groupe sur le plan

(e) g ·X =

(
a b
0 1

)(
x
y

)
=

(
ax+ by

y

)
.

(f)

i. Si y ̸= 0. L’ordonnée de g ·X est toujours y. L’abscisse est x′ = ax+by. Comme a parcourt
R∗ et b parcourt R, la valeur ax + by peut prendre n’importe quelle valeur réelle (fixons
a = 1, alors x + by décrit R quand b varie). L’orbite est la droite horizontale d’équation
Y = y.

ii. Pour E1 =

(
1
0

)
, ici y = 0. L’ordonnée reste 0. L’abscisse devient a(1) + b(0) = a. Comme

a ∈ R∗, l’orbite est l’axe des abscisses privé de l’origine : R∗ × {0}.

iii. Pour l’origine, x = 0, y = 0. g ·O =

(
0
0

)
. L’orbite est le singleton {(0, 0)}.

iv. La partition est constituée de : l’origine {0}, l’axe des abscisses privé de 0, et toutes les
droites horizontales Y = c pour chaque c ̸= 0.

3. Lien géométrique

(g) Soit Γ : G→ Aff(R) définie par Γ
(
a b
0 1

)
= fa,b où fa,b(t) = at+ b. Vérifions le morphisme :

Soient M = (a, b) et M ′ = (a′, b′). MM ′ = (aa′, ab′ + b). Γ(MM ′) = faa′,ab′+b. D’autre part,
Γ(M) ◦Γ(M ′) = fa,b ◦ fa′,b′ . (fa,b ◦ fa′,b′)(t) = a(a′t+ b′)+ b = aa′t+ ab′+ b = faa′,ab′+b(t). C’est
bien un isomorphisme (bijectif par construction des paramètres).
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On considère l’ensemble G des matrices de la forme :

A(f, g, h) =

1 f(X) h(X,Y )
0 1 g(Y )
0 0 1


où f ∈ R[X], g ∈ R[Y ] et h ∈ R[X,Y ].

1. Sous-groupe de UT3(R(x, y))

Pour montrer que G est un sous-groupe du groupe UT3(R(x, y)) des matrices triangulaires su-
périeures unipotentes à coefficients rationnels, nous devons vérifier trois points :

1. Inclusion : Les coefficients f(X), g(Y ) et h(X,Y ) sont des polynômes, donc des fractions
rationnelles particulières (dénominateur égal à 1). De plus, les éléments diagonaux valent
1 et la partie triangulaire inférieure est nulle. Donc G ⊂ UT3(R(x, y)).

2. Élément neutre : La matrice identité I3 correspond au cas où f = 0, g = 0 et h = 0.
Comme le polynôme nul appartient bien à R[X], R[Y ] et R[X,Y ], on a I3 ∈ G.

3. Stabilité par produit : Soient M1 = A(f1, g1, h1) et M2 = A(f2, g2, h2) deux éléments
de G. Calculons le produit :

M1M2 =

1 f1 h1
0 1 g1
0 0 1

1 f2 h2
0 1 g2
0 0 1


=

1 f1 + f2 h2 + f1g2 + h1
0 1 g1 + g2
0 0 1


Posons f ′ = f1 + f2, g′ = g1 + g2 et h′ = h1 + h2 + f1(X)g2(Y ). On a bien f ′ ∈ R[X] et
g′ ∈ R[Y ]. De plus, le produit f1(X)g2(Y ) est un polynôme en X et Y , donc h′ ∈ R[X,Y ].
Ainsi, M1M2 ∈ G.

4. Stabilité par inverse : Soit M = A(f, g, h) ∈ G. Cherchons son inverse. On sait
que l’inverse d’une matrice triangulaire unipotente est de la même forme. En résolvant
MM−1 = I3, on trouve :

M−1 =

1 −f fg − h
0 1 −g
0 0 1


On vérifie que −f ∈ R[X], −g ∈ R[Y ] et f(X)g(Y )− h(X,Y ) ∈ R[X,Y ]. Donc M−1 ∈ G.

Conclusion : G est bien un sous-groupe de UT3(R(x, y)).

2. Calcul du commutateur

Le commutateur de deux matrices A et B est défini par [A,B] = ABA−1B−1. Soient A =
A(f1, g1, h1) et B = A(f2, g2, h2).

D’après le calcul de produit effectué précédemment :

AB = A(f1 + f2, g1 + g2, h1 + h2 + f1g2)

BA = A(f2 + f1, g2 + g1, h2 + h1 + f2g1)
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On remarque que AB et BA ont les mêmes coefficients sur la diagonale et sur la sur-diagonale
immédiate (positions (1, 2) et (2, 3)). Ils ne diffèrent que par le terme en position (1, 3). Posons
∆ = (AB)1,3 − (BA)1,3.

∆ = (h1 + h2 + f1g2)− (h2 + h1 + f2g1) = f1(X)g2(Y )− f2(X)g1(Y )

Le commutateur [A,B] est égal à (AB)(BA)−1. Comme AB et BA ne diffèrent que par le terme
(1, 3), leur quotient est une matrice où seule la composante (1, 3) est non nulle (en dehors de

la diagonale). Plus précisément, si M =

1 u w
0 1 v
0 0 1

 et M ′ =

1 u w′

0 1 v
0 0 1

, alors M(M ′)−1 =1 0 w − w′

0 1 0
0 0 1

.

Ainsi, le commutateur est :

[A,B] =

1 0 f1(X)g2(Y )− f2(X)g1(Y )
0 1 0
0 0 1



3. Le groupe dérivé D(G)

Le groupe dérivéD(G) est le sous-groupe engendré par les commutateurs. D’après la question pré-
cédente, tout commutateur est de la forme A(0, 0, P ) avec P (X,Y ) = f1(X)g2(Y )−f2(X)g1(Y ).

L’ensemble des matrices de la forme A(0, 0, h) constitue un sous-groupe abélien isomorphe au
groupe additif des polynômes R[X,Y ] (le produit de matrices correspond à la somme des termes
h). Pour montrer que D(G) est l’ensemble de toutes les matrices A(0, 0, h) avec h ∈ R[X,Y ], il
suffit de montrer que tout polynôme h(X,Y ) peut s’écrire comme une somme de termes de la
forme f1g2 − f2g1.

Considérons un monôme quelconque XiY j . Si l’on choisit :
— f1(X) = Xi et g2(Y ) = Y j

— f2(X) = 0 et g1(Y ) = 0

Alors le terme du commutateur est Xi ·Y j−0 = XiY j . Ainsi, tout monôme est un commutateur.
Comme tout polynôme de R[X,Y ] est une somme finie de monômes, tout polynôme peut être
engendré par des produits de commutateurs.

Conclusion : Le groupe dérivé de G est l’ensemble des matrices :

B =

1 0 h(X,Y )
0 1 0
0 0 1

 avec h ∈ R[X,Y ].

4. La matrice C n’est pas un commutateur

On souhaite montrer que la matrice C définie par le polynôme h(X,Y ) = X2 +XY + Y 2 n’est
pas un commutateur.

Raisonnement par l’absurde : Supposons que C soit un commutateur. D’après la question
2, il existerait des polynômes f1, f2 ∈ R[X] et g1, g2 ∈ R[Y ] tels que :

X2 +XY + Y 2 = f1(X)g2(Y )− f2(X)g1(Y )
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Notons g1(Y ) et g2(Y ) sous la forme de leur développement en puissances de Y :

g1(Y ) =
∑
k

akY
k et g2(Y ) =

∑
k

bkY
k

où ak et bk sont des coefficients réels.

En remplaçant ces expressions dans l’équation initiale, on obtient :

X2 +XY + Y 2 = f1(X)

(∑
k

bkY
k

)
− f2(X)

(∑
k

akY
k

)
=
∑
k

(bkf1(X)− akf2(X))Y k

Cette égalité est une égalité entre deux polynômes à deux variables. On peut identifier les coeffi-
cients des puissances de Y de chaque côté. Regardons les coefficients devant Y 0 (terme constant
en Y ), Y 1 et Y 2 :

— Coefficient de Y 0 (à gauche X2) :

X2 = b0f1(X)− a0f2(X)

— Coefficient de Y 1 (à gauche X) :

X = b1f1(X)− a1f2(X)

— Coefficient de Y 2 (à gauche 1) :

1 = b2f1(X)− a2f2(X)

Argument d’algèbre linéaire : Considérons l’espace vectoriel R[X]. Soit V = Vect(f1, f2) le
sous-espace vectoriel engendré par les polynômes f1 et f2. Par définition, la dimension de V est
au plus 2 (dim(V ) ≤ 2).

Or, les relations ci-dessus montrent que les polynômes 1, X et X2 sont des combinaisons linéaires
de f1 et f2. Autrement dit :

{1, X,X2} ⊂ Vect(f1, f2)

Cependant, la famille F = {1, X,X2} est une famille libre de R[X]. Le sous-espace engendré par
F est donc de dimension 3.

Il est impossible qu’un espace de dimension 3 soit inclus dans un espace V de dimension au plus
2.

Conclusion : L’hypothèse de départ est fausse. Il est impossible d’écrire X2 +XY + Y 2 sous
la forme f1g2 − f2g1. La matrice C n’est pas un commutateur.
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Exercice 5 : Les 3-Sylow de S6

1. Ordre et structure abstraite

(a) |S6| = 6! = 720. Décomposition en facteurs premiers : 720 = 72 × 10 = 8 × 9 × 10 =
16 × 9 × 5 = 24 · 32 · 51. La plus grande puissance de 3 divisant l’ordre est 32 = 9. Un 3-Sylow
est donc un groupe d’ordre 9.

(b) Pour avoir un élément d’ordre 9 dans S6, il faudrait une permutation dont l’ordre (le ppcm
des longueurs de ses cycles disjoints) soit 9. Les partitions de 6 sont : 6, 5+1, 4+2, 4+1+1, 3+
3, 3 + 2 + 1, etc. Les ppcm possibles sont : 6, 5, 4, 3. Aucun élément n’est d’ordre 9.

(c) Un groupe d’ordre p2 (ici 32 = 9) est toujours abélien. À isomorphisme près, c’est soit Z/9Z,
soit (Z/3Z)2. Comme il n’y a pas d’élément d’ordre 9, ce n’est pas Z/9Z. C’est donc (Z/3Z)2.

2. Construction explicite

(a) σ = (1 2 3) et τ = (4 5 6) sont des cycles à supports disjoints, donc ils commutent :
στ = τσ. L’ordre de σ est 3, l’ordre de τ est 3. Le groupe engendré P = ⟨σ, τ⟩ est isomorphe à
⟨σ⟩ × ⟨τ⟩ ∼= Z/3Z× Z/3Z. Il est d’ordre 9, c’est donc un 3-Sylow.

(b) Les 9 éléments sont :

— L’identité : e

— Supports disjoints purs (générés par σ ou τ) : (1 2 3), (1 3 2), (4 5 6), (4 6 5). (4 éléments).

— Produits (générés par στ) : (1 2 3)(4 5 6), (1 2 3)(4 6 5), (1 3 2)(4 5 6), (1 3 2)(4 6 5). (4
éléments).

Il contient 4 éléments d’ordre 3 à support de taille 3 (les 3-cycles). Il contient 4 produits de deux
3-cycles disjoints.

3. Normalisateur et dénombrement

(a) Soit g ∈ NS6(P ). La conjugaison par g préserve la structure de cycles. Les 3-cycles de P
sont ceux dont le support est E1 ou E2. Donc g doit envoyer l’ensemble des 3-cycles sur E1

soit sur lui-même, soit sur l’ensemble des 3-cycles sur E2. Cela implique g(E1) = E1 (et donc
g(E2) = E2) OU g(E1) = E2 (et donc g(E2) = E1). La permutation γ = (1 4)(2 5)(3 6) échange
les supports et conjugue σ en τ , donc elle est dans le normalisateur.

(b)

— Si g(E1) = E1 : g agit comme une permutation de E1 et une permutation de E2. N’importe
quelle permutation de S(E1) normalise ⟨σ⟩ (car ⟨σ⟩ = A3 ◁S3). Il y a 3! = 6 choix pour
E1 et 3! = 6 choix pour E2. Soit 6× 6 = 36 éléments.

— Si g(E1) = E2 : Ces éléments sont de la forme h◦γ où h préserve les blocs. Il y en a autant,
soit 36.

Total : |NS6(P )| = 36 + 36 = 72.

(c) Le nombre de Sylow est l’indice du normalisateur : n3 =
|S6|

|NS6
(P )| =

720
72 = 10.

(d) Théorèmes de Sylow : n3 ≡ 1 (mod 3). Ici 10 ≡ 1 (mod 3). n3 divise |G|/9 = 80. 10 divise
bien 80. C’est cohérent.
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4. Lien avec A6

(a) P est engendré par des 3-cycles. Les 3-cycles sont des permutations paires (signature (−1)3−1 =
1). Donc P ⊂ A6.

(b) On cherche n3(A6). NA6(P ) = NS6(P ) ∩ A6. Le morphisme NS6(P ) → {−1, 1} donné par
la restriction de la signature est surjectif, donc |NA6(P )| = |NS6(P )| / 2 = 36. Donc n3(A6) =
|A6|
36 = 360

36 = 10.
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