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Exercice 3 : Etude du groupe affine et de ses actions

1. Structure algébrique

. a b
(a) Soit M = <0 1

donc M € GLy(R).

) € G.Onadet(M)=ax1—-0xb=a. Puisque a € R*, det(M) # 0,

— L’élément neutre Iy = <1 0> appartient & G (a = 1,0 =0).

0 1
! /
— Soient M = (g i)) et M' = (C(L) ﬁ) dans G.
, [ad ab +b
- (5,

Comme a,a’ € R*, aa’ € R*. Et ab’ +b € R. Donc MM’ € G.

_ 1 —b 1/a —b/a
. 1 _ 1 _
— Inverse : M —a<0 a>_<0 1>€G.

G est donc un sous-groupe de GL2(R). Le groupe n’est pas abélien. Par exemple, pour A =

2 0 1 1 2 2 . 2 1
<0 1) etB—<0 1>,onaAB—<O 1> malsBA—(O 1).

a b
0 1

ar ay+b\ (xa xb+y
0 1 ~\ 0 1

Cela impose axz = za (toujours vrai) et ay + b = xb + y. Pour que ay + b = xb+ y soit vrai pour
tousx e R* et y e R, prenons y=1,r =1 =— a+b=>bb+1 = a = 1. L’équation devient
ly+b=1b+y = b=10>. Cependant, si on prend y = 0 et x = 2 dans I’équation initiale avec
a=1:b=2b = b=0. Donc Z(G) = {I2}.

(c)
N N o : a b 1 k
i. Vérifions la distinction par conjugaison. Soit M = eGet K= € H.

(b) Cherchons le centre Z(G). Soit M = (
avoir M X = X M.

) € Z(G). Pour tout X = (g 3;) € G, on doit

01 01

1 (a ak+0b\ (1/a —b/a\ (1 —b+ak+Db\ (1 ak
MKM_(O 1><01_0 1 =lo 1)¢H

Donc H est un sous-groupe distingué de G.



/ /
ii. YY) = <(1) l{) <(1) b1> = ((1) b +1 b) =1 (b+10). ¥ est un morphisme bijectif, donc

un isomorphisme de (R, +) vers (H, x).

(d) ¢ (g ?) = a.

L. o(MM') = ¢ <ag’ 1) = ad' = ¢(M)p(M’). C’est un morphisme. Il est surjectif car

g ?) est un antécédent.

ii. ker(p) ={M €G|a=1}=H.

iii. Théoréme d’isomorphisme : Soit f : G — G’ un morphisme de groupes. Alors G/ ker(f)
est isomorphe a Im(f).

iv. Ici, Im(¢) = R*. Donc G/H ~ (R*, x).

pour tout z € R*, la matrice (

2. Action de groupe sur le plan

a b\ (x azx + by
@sx=(5 1)) (")")
(f)
i. Siy # 0. L’ordonnée de g- X est toujours y. L’abscisse est 2’ = ax + by. Comme a parcourt
R* et b parcourt R, la valeur ax + by peut prendre n’importe quelle valeur réelle (fixons

a = 1, alors x + by décrit R quand b varie). L’orbite est la droite horizontale d’équation
Y =y.

ii. Pour Fy = ici y = 0. L’ordonnée reste 0. L’abscisse devient a(1) 4+ b(0) = a. Comme

1
0 )
a € R*, lorbite est I’axe des abscisses privé de l'origine : R* x {0}.

8) L’orbite est le singleton {(0,0)}.

iv. La partition est constituée de : 'origine {0}, I'axe des abscisses privé de 0, et toutes les
droites horizontales Y = ¢ pour chaque ¢ # 0.

iii. Pour l'origine, z =0,y =0. g- 0 = <

3. Lien géométrique

(g) Soit I' : G — Aff(R) définie par I’ (8 117
Soient M = (a,b) et M' = (/,0'). MM' = (ad’,al/ +b). [(MM') = faa apr+b- D’autre part,
I'(M)o F(M’) = fa,b o fa’,b’~ (fa,b o fa’,b’)(t) = a(a’t + b,) +b=adt+ab +b= faa’,ab’+b(t)~ Cest
bien un isomorphisme (bijectif par construction des paramétres).

= fap 00 fop(t) = at +b. Vérifions le morphisme :



On considére ’ensemble G des matrices de la forme :

1 f(X) h(X,)Y)
0 0 1

ou f € RIX], g e R[Y] et h € RIX,Y].

1. Sous-groupe de UT3(R(z,y))

Pour montrer que G est un sous-groupe du groupe UT3(R(z,y)) des matrices triangulaires su-
périeures unipotentes & coefficients rationnels, nous devons vérifier trois points :

1. Inclusion : Les coefficients f(X), g(Y) et h(X,Y) sont des polynéomes, donc des fractions
rationnelles particuliéres (dénominateur égal a 1). De plus, les éléments diagonaux valent
1 et la partie triangulaire inférieure est nulle. Donc G C UT5(R(z, y)).

2. Elément neutre : La matrice identité I3 correspond au cas oit f =0, g = 0 et h = 0.
Comme le polynoéme nul appartient bien & R[X], R[Y] et R[X,Y], on a I3 € G.

3. Stabilité par produit : Soient M7 = A(f1,91,h1) et Mo = A(f2, 92, h2) deux éléments
de G. Calculons le produit :

1 i m 1 fa he
MiMy=|0 1 g1 0 1 ¢
0O 0 1 0 0 1
1 fi+fa ho+ fige+ M
=10 1 g1+ 92
0 0 1

Posons f' = fi+ fa, d = g1+ g2 et B = h1 + ha + f1(X)g2(Y). On a bien f' € R[X] et
g € R[Y]. De plus, le produit f1(X)g2(Y) est un polynéme en X et Y, donc b’ € R[X,Y].
Ainsi, M1 M, € G.

4. Stabilité par inverse : Soit M = A(f,g,h) € G. Cherchons son inverse. On sait

que l'inverse d’une matrice triangulaire unipotente est de la méme forme. En résolvant
MM~' = I3, on trouve :

L —f fg—nh
M't=[0o 1 —g
0 0 1

On vérifie que —f € R[X], —g € R[Y] et f(X)g(Y) —h(X,Y) € R[X,Y]. Donc M~ € G.

Conclusion : G est bien un sous-groupe de UT3(R(z,y)).

2. Calcul du commutateur

Le commutateur de deux matrices A et B est défini par [4,B] = ABA™'B~!. Soient A =
A(f1,91,h1) et B = A(f2, 92, ha).

D’apres le calcul de produit effectué précédemment :
AB = A(f1+ f2,91 + g2, b1 + h2 + f192)

BA = A(fa + fi,92 + g1, ha + h1 + fag1)



On remarque que AB et BA ont les mémes coefficients sur la diagonale et sur la sur-diagonale
immédiate (positions (1,2) et (2,3)). Ils ne différent que par le terme en position (1,3). Posons
A= (AB)13— (BA)3.

A = (h1+ha + fig2) — (ha + b1 + fag1) = [1(X)g2(Y) — f2(X)g1(Y)

Le commutateur [A, B] est égal & (AB)(BA)~!. Comme AB et BA ne différent que par le terme
(1,3), leur quotient est une matrice ou seule la composante (1,3) est non nulle (en dehors de

1 v w 1 u w
la diagonale). Plus précisément, si M = [0 1 v ]| et M = [0 1 v |,alors M(M')~! =
0 0 1 0 0 1
1 0 w—u'
0 1 0
0 0 1
Ainsi, le commutateur est :
1 0 fi(X)gY) - f2(X)gi(Y)
[A,B]=1(0 1 0
0 0 1

3. Le groupe dérivé D(G)

Le groupe dérivé D(G) est le sous-groupe engendré par les commutateurs. D’aprés la question pré-

cédente, tout commutateur est de la forme A(0,0, P) avec P(X,Y) = f1(X)g2(Y) — f2(X)g1(Y).

L’ensemble des matrices de la forme A(0,0, k) constitue un sous-groupe abélien isomorphe au
groupe additif des polynomes R[X, Y] (le produit de matrices correspond & la somme des termes
h). Pour montrer que D(G) est 'ensemble de toutes les matrices A(0,0,h) avec h € R[X,Y], il
suffit de montrer que tout polynéme h(X,Y) peut s’écrire comme une somme de termes de la
forme fi1g2 — fag1.
Considérons un monéme quelconque X*Y7. Si I'on choisit :

— fl(X) = )(z et gg(Y) = Yj

— fo(X)=0et ¢1(Y)=0
Alors le terme du commutateur est X*- Y7 —0 = X*Y7. Ainsi, tout monoéme est un commutateur.

Comme tout polynome de R[X,Y] est une somme finie de monoémes, tout polynéme peut étre
engendré par des produits de commutateurs.

Conclusion : Le groupe dérivé de G est 'ensemble des matrices :
h(X,Y)

10
B=10 1 0 avec h € R[X,Y].
00 1

4. La matrice C' n’est pas un commutateur

On souhaite montrer que la matrice C' définie par le polynéme h(X,Y) = X2 + XY + Y2 n’est
pas un commutateur.

Raisonnement par 1’absurde : Supposons que C' soit un commutateur. D’aprés la question
2, il existerait des polynémes fi, fo € R[X] et 1,92 € R[Y] tels que :

X2+ XY +Y2 = f1(X)g2(Y) — fo(X)g1(Y)



Notons g1(Y') et g2(Y) sous la forme de leur développement en puissances de Y :
g ((Y)= Z arY® et go(Y) = Z biY*
k k

ou ay, et by sont des coeflicients réels.

En remplacant ces expressions dans I’équation initiale, on obtient :

X2+ XY +Y? = fi(X) (Z ka’“) — fa(X) <Z akYk>
k k

= 5" (Orf1(X) — afo(X)) Y
k

Cette égalité est une égalité entre deux polynémes & deux variables. On peut identifier les coeffi-
cients des puissances de Y de chaque coté. Regardons les coefficients devant Y (terme constant
enY), Yiet Y?:

— Coefficient de Y (& gauche X?) :
X% =bo fi(X) — ag fo(X)
— Coefficient de Y (a gauche X) :
X =b1f1(X) — a1 fo(X)
— Coefficient de Y2 (a gauche 1) :
1 =0y f1(X) — azgf2(X)

Argument d’algébre linéaire : Considérons I'espace vectoriel R[X]. Soit V' = Vect(f, f2) le
sous-espace vectoriel engendré par les polynémes fi et fo. Par définition, la dimension de V est
au plus 2 (dim(V) < 2).

Or, les relations ci-dessus montrent que les polynémes 1, X et X2 sont des combinaisons linéaires
de f1 et fo. Autrement dit :
{17X7X2} C veCt(fh fQ)

Cependant, la famille F = {1, X, X?} est une famille libre de R[X]. Le sous-espace engendré par
F est donc de dimension 3.

Il est impossible qu’un espace de dimension 3 soit inclus dans un espace V' de dimension au plus
2.

Conclusion : L’hypothése de départ est fausse. Il est impossible d’écrire X2 + XY + Y2 sous
la forme f1gs — fog1. La matrice C' n’est pas un commutateur.



Exercice 5 : Les 3-Sylow de Gg

1. Ordre et structure abstraite

(a) |&¢| = 6! = 720. Décomposition en facteurs premiers : 720 = 72 x 10 = 8 x 9 x 10 =
16 x 9 x 5 = 2*.32.5! La plus grande puissance de 3 divisant I'ordre est 32 = 9. Un 3-Sylow
est donc un groupe d’ordre 9.

(b) Pour avoir un élément d’ordre 9 dans Gg, il faudrait une permutation dont I'ordre (le ppecm
des longueurs de ses cycles disjoints) soit 9. Les partitions de 6 sont : 6,5+1,44+2,4+1+1,3+
3,342+ 1, etc. Les ppcm possibles sont : 6, 5, 4, 3. Aucun élément n’est d’ordre 9.

(c) Un groupe d’ordre p? (ici 32 = 9) est toujours abélien. A isomorphisme prés, c’est soit Z/97Z,
soit (Z/3Z)%. Comme il n’y a pas d’élément d’ordre 9, ce n’est pas Z/9Z. C’est donc (Z/37)>.

2. Construction explicite

(a) o = (123)et 7= (45 6) sont des cycles & supports disjoints, donc ils commutent :
o1 = 1o. L’ordre de o est 3, 'ordre de 7 est 3. Le groupe engendré P = (o, T) est isomorphe a
(o) x (1) 2 7Z/3Z x Z/37Z. 1l est d’ordre 9, c’est donc un 3-Sylow.
(b) Les 9 éléments sont :
— L’identité : e
— Supports disjoints purs (générés par o ou 7) : (12 3),(132),(456),(465). (4 éléments).
— Produits (générés par o7) : (12 3)(456),(123)(465),(132)(456),(132)(4605). (4
éléments).

I1 contient 4 éléments d’ordre 3 & support de taille 3 (les 3-cycles). Il contient 4 produits de deux
3-cycles disjoints.

3. Normalisateur et dénombrement

(a) Soit g € Ng,(P). La conjugaison par g préserve la structure de cycles. Les 3-cycles de P
sont ceux dont le support est £y ou Es. Donc g doit envoyer ’ensemble des 3-cycles sur Ej
soit sur lui-méme, soit sur I’ensemble des 3-cycles sur Es. Cela implique g(E;) = E; (et donc
g(E2) = E3) OU g(Ey) = E» (et donc g(F2) = Ej). La permutation v = (1 4)(2 5)(3 6) échange
les supports et conjugue o en 7, donc elle est dans le normalisateur.

(b)
— Sig(F1) = Ei : g agit comme une permutation de Fj et une permutation de Fy. N’importe
quelle permutation de G(E;) normalise (o) (car (o) = A3 <163). Il y a 3! = 6 choix pour
FEq et 3! = 6 choix pour FEs. Soit 6 X 6 = 36 éléments.
— Sig(F1) = E3 : Ces éléments sont de la forme ho~ ou h préserve les blocs. Il y en a autant,
soit 36.
Total : [Ng,(P)| = 36 4 36 = 72.

(c) Le nombre de Sylow est 'indice du normalisateur : ng = Wz% = % =10

(d) Théorémes de Sylow : ng =1 (mod 3). Ici 10 = 1 (mod 3). n3 divise |G|/9 = 80. 10 divise
bien 80. C’est cohérent.



4. Lien avec Ag

(a) P est engendré par des 3-cycles. Les 3-cycles sont des permutations paires (signature (—1)3~! =
1). Donc P C Ag.

(b) On cherche n3(Ag). Naz(P) = Ny (P) N Ag. Le morphisme Ng,(P) — {—1,1} donné par

la restriction de la signature est surjectif, donc |[N4,(P)| = |Ne4(P)| /2 = 36. Donc nz(Ag) =
sl _ 360 _ 1
36 36 O



