
Algèbre 2, L3
Examen du 12/01/2026 à 9h
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Exercice 1 (Question de cours).

1. Soit G un groupe agissant sur un ensemble X. Pour x ∈ X, définir le stabilisateur Gx de x et son orbite G ·x.
Quel résultat du cours établit un lien entre ces objets ?

2. Soit G,H des groupes et f : G → H une fonction. Ecrire avec des quantificateurs l’affirmation ”f est un
isomorphisme de groupes“.

3. Soit G un groupe fini, on note |G| = n =
∏r

i=1 p
αi
i , où les nombres pi sont premiers distincts et les αi sont

strictement positifs. Soit i ∈ {1, . . . , r} et 1 ≤ j ≤ αi. Dans G, existe-t-il toujours un élément d’ordre pji ? On
répondra en citant un résultat du cours ou en donnant un contre-exemple.

Exercice 2 (Classification des groupes abéliens d’ordre 72).

1. Dresser la liste complète, à isomorphisme près, des groupes abéliens d’ordre 72 sous leur forme de décomposition
primaire (produit de groupes cycliques d’ordres des puissances de nombres premiers).

2. Pour chacun des groupes listés à la question précédente, donner sa décomposition cyclique.

3. Soit G un groupe abélien d’ordre 72. On suppose que G ne possède aucun élément d’ordre 9, mais qu’il possède
au moins un élément d’ordre 12. Quel est le groupe G parmi ceux listés précédemment ?

Exercice 3 (Étude du groupe affine et de ses actions). On considère l’ensemble G des matrices réelles
triangulaires supérieures définies par :

G =

{(
a b
0 1

) ∣∣∣∣ a ∈ R∗, b ∈ R
}

1. Structure algébrique

(a) Montrer que G est un sous-groupe du groupe général linéaire GL2(R). Le groupe G est-il abélien ?

(b) Déterminer le centre Z(G) du groupe G.

(c) On considère le sous-ensemble H défini par :

H =

{(
1 b
0 1

) ∣∣∣∣ b ∈ R
}

i. Montrer que H est un sous-groupe distingué de G.

ii. Montrer que l’application ψ : R → H définie par ψ(b) =

(
1 b
0 1

)
est un isomorphisme de groupes de

(R,+) vers (H,×).

(d) On considère l’application ϕ : G→ R∗ définie par :

ϕ

((
a b
0 1

))
= a

i. Montrer que ϕ est un morphisme de groupes surjectif de (G,×) vers (R∗,×).

ii. Déterminer le noyau ker(ϕ).

iii. Enoncer le théorème de factorisation canonique des morphismes.

iv. En déduire à quel groupe classique le quotient G/H est isomorphe.

2. Action de groupe sur le plan

On fait agir le groupe G sur le plan vectoriel R2 par l’action naturelle (multiplication matrice-vecteur). Pour
tout g ∈ G et tout vecteur X ∈ R2, on note g ·X = gX.

Soit X =

(
x
y

)
un vecteur de R2, soit E1 =

(
1
0

)
et O =

(
0
0

)
.
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(e) Pour g =

(
a b
0 1

)
, exprimer les coordonnées du vecteur g ·X en fonction de a, b, x et y.

(f) On cherche à déterminer les orbites de cette action, notées G ·X = {g ·X | g ∈ G}.
i. On suppose que y ̸= 0. Montrer que l’orbite du point X est la droite horizontale d’équation Y = y.

ii. Déterminer l’orbite du point E1.

iii. Déterminer l’orbite de l’origine O.

iv. Décrire la partition de R2 induite par cette action.

3. Lien géométrique

(g) Soit Aff(R) le groupe des transformations affines de la droite réelle, c’est-à-dire l’ensemble des applications
fa,b : R → R définies par fa,b(t) = at+ b (avec a ̸= 0), muni de la loi de composition des applications.

Construire un isomorphisme de groupes explicite Γ : G→ Aff(R).

Exercice 4 (Groupe dérivé). Soit G l’ensemble des matrices de la forme :

A(f, g, h) :=

1 f(X) h(X,Y )
0 1 g(Y )
0 0 1


où f, g et h sont des polynômes à coefficients réels (c’est-à-dire f ∈ R[X], g ∈ R[Y ] et h ∈ R[X,Y ]).

1. On rappelle que lorsque K est un corps, l’ensemble UT3(K) des matrices de la forme

1 a b
0 1 c
0 0 1

, avec a, b, c ∈

K, est un sous-groupe de GL3(K), et donc un groupe. On ne demande pas de preuve de ces résultats. Montrer
que G est un sous-groupe du groupe UT3(R(X,Y )), où R(X,Y ) désigne le corps des fractions rationnelles
P/Q avec P,Q ∈ R[X,Y ] et Q ̸= 0.

2. Soit f1, f2 ∈ R[X], g1, g2 ∈ R[Y ] et h1, h2 ∈ R[X,Y ]. Déterminer le commutateur [A(f1, g1, h1), A(f2, g2, h2)]
dans G (on rappelle que [B,C] = BCB−1C−1).

3. Démontrer que le groupe dérivé de G est l’ensemble des matrices de la forme :

B =

1 0 h(X,Y )
0 1 0
0 0 1

 avec h(X,Y ) ∈ R[X,Y ].

4. Démontrer que la matrice C définie par :

C =

1 0 X2 +XY + Y 2

0 1 0
0 0 1


n’est pas un commutateur. On pourra utiliser le résultat suivant : si P0, . . . , Pk, Q0, . . . , Qk ∈ R[X] sont des
polynômes tels que Σk

i=0PiY
i = Σk

i=0QiY
i (égalité dans R[X,Y ]), alors pour tout i, Pi = Qi.

Exercice 5 (Les 3-Sylow de S6 et A6).

1. Ordre et structure abstraite

(a) Déterminer l’ordre de S6. Quel est l’ordre d’un 3-sous-groupe de Sylow de S6 ?

(b) Montrer que S6 ne contient aucun élément d’ordre 9.

(c) En déduire que tout 3-sous-groupe de Sylow de S6 est isomorphe à (Z/3Z)2.
2. Construction explicite

(a) Soient les cycles σ = (1 2 3) et τ = (4 5 6). Montrer que le sous-groupe P = ⟨σ, τ⟩ engendré par σ et τ
est un 3-Sylow de S6.

(b) Énumérer les éléments de P . Combien contient-il d’éléments d’ordre 3 ayant pour support un ensemble
à 3 éléments ? Combien contient-il de produits de deux 3-cycles disjoints ?
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3. Normalisateur et dénombrement : on cherche à déterminer le nombre n3 de 3-Sylow à l’aide du normalisateur
NS6(P ) = {g ∈ S6, gPg

−1 = P}.
(a) On note E1 = {1, 2, 3} et E2 = {4, 5, 6}. Soit g ∈ S6. Montrer que g ∈ NS6

(P ) si et seulement si
g(E1) = E1 ou g(E1) = E2.

(b) En déduire l’ordre du normalisateur |NS6
(P )|. On pourra considérer la permutation γ = (1 4)(2 5)(3 6).

(c) En utilisant l’action de S6 par conjugaison sur l’ensemble de ses 3-Sylow, calculer n3.

(d) Vérifier que le résultat est cohérent avec le troisième théorème de Sylow.

4. Les 3-Sylow de A6

(a) Montrer que P ⊂ A6.

(b) Déterminer le nombre de 3-Sylow dans le groupe alterné A6.
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